The cobra lily (Darlingtonia californica) is one of North America's most stunning pitcher plants. Native to a small region between northern California and southwestern Oregon, this bizarrely beautiful carnivore lives out its life in nutrient poor, cold water bogs and seeps. Although it resides in the same family as our other North American pitcher plants, Sarraceniaceae, the cobra lily has a unique taxonomic position as the only member of its genus.
It doesn't take much familiarity with this plant to guess that it is carnivorous. Its highly modified leaves function as superb insect traps. Lured in by the brightly colored, tongue-like protrusions near the front tip of the hood, insects find a sweet surprise. These tongue-like structures secrete nectar. As insects gradually make their way up the tongue, they inevitably find themselves within the downward pointing mouth of the pitcher. This is where those translucent spots on the top of the hood come in.
Those translucent spots trick the insects into flying upwards into the light. Instead of a clean getaway, insects crash into the inside of the hood and fall down within the trap. The slippery walls of the pitcher interior make escape nearly impossible but that isn't the only thing keeping insects inside. Research has shown that the cobra lily gets a helping hand from bacteria living within the pitcher fluid.
Unlike other pitcher plants, the cobra lily does not fill its traps with rain water. The downward pointing mouth prevents that from happening. Instead, the pitchers secrete their own fluid by pumping water up from the roots. Although there is evidence that the cobra lily does produce at least some of its own digestive enzymes, it is largely believed that this species relies heavily on a robust microbial community living within its pitchers to do most of the digesting for it. This mutualistic community of microbes saves the plant a lot of energy while also providing it with essential nutrients like nitrogen in return for a safe place to live.
That isn't all the bacteria are doing for this pitcher plant either. As it turns out, the pitchers' microbial community may also be helping the plant capture and subdue its prey. A study based out of UC Berkeley demonstrated that the presence of these microbes helps lower the surface tension of the water, effectively drowning any insect almost immediately.
Some members of the microbial community release special compounds called biosurfactants. Through an interesting chemical/physical process that I won't go into here, this keeps insects from using the surface tension of the water to keep them afloat, not unlike a water strider on a pond. Instead, as soon as insects hit the bacteria infested waters, they break the surface tension and sink down to the bottom of the pitcher where they quickly drown. There is little chance of escape for a hapless insect unlucky enough to fall into a cobra lily trap.
Although plant-microbe interactions are nothing new to science, this example is the first of its kind. Although this prey capture role is very likely a secondary benefit of the microbial community within the pitchers, it certainly makes a big difference for these carnivores living in such nutrient poor conditions.
Read more about the amazing world of carnivorous plants by picking up a copy of my book!
Further Reading: [1]