Crab Spiders and Pitcher Plants: A Dynamic Duo

Nepenthes_madagascariensis_-_Nepenthaceae_-_Katja_Rembold_(12)-2.JPG

Most pitcher plants in the genus Nepenthes seem pretty adept at catching prey. These plants specialize in nutrient-poor soils and their carnivorous habit evolved as a means of supplementing their nutritional needs. Despite the highly evolved nature of their pitfall traps (which are actually modified leaves), Nepenthes aren’t perfect killing machines. In fact, some get a helping hand from seemingly unlikely partners.

Spend enough time reading about Nepenthes in the wild and you will see countless mentions of arthropods hanging around their pitchers. Some of these inevitably become prey, however, there are others that appear to be taking advantage of the plant. Nepenthes don’t passively trap arthropods. Instead, they lure them in with bright colors and the promise of tasty treats like nectar. This is not lost on predators like spiders, who are frequent denizens of pitcher mouths.

4000507626_eed1e08da4_o.jpg

Most notable to Nepenthes specialists are some of the crab spiders that frequently haunt Nepenthes traps. These wonderful arachnids sit at the mouth of the pitcher and ambush any insects that try to pay it a visit. Often times both predator and prey fall down into the pitcher, however, thanks to a strand of silk, the spiders easily climb back out with their meal. This may seem like bad news for the pitcher, however, recent research based out of the National University of Singapore has shown that this relationship is not entirely one sided.

By studying the interactions between spiders and pitcher plants both in the lab and in the field, ecologists discovered that at least one species of pitcher plant (Nepenthes gracilis) appears to benefit greatly from the presence of crab spiders. The key to understanding this relationship lies in the types of prey N. gracilis is able to capture when crab spiders are and are not present.

Not only did the presence of a resident crab spider increase the amount of prey in each Nepenthes pitcher, it also changed the types of insects that were being captured. Crab spiders are ambush predators that frequently attack prey much larger than themselves. It may seem as if this is a form of food robbery on the part of the crab spider but the spiders can’t eat everything. When they have eaten their fill, the spiders discard the carcass into the pitcher where the plant can make quick work digesting it for its own benefit.

Over time, simply having a spider hunting on the trap led to a marked increase in the number of insects in each pitcher compared to those without a spider. Even if these meals are already half eaten, the plant still gains nutrients. Additionally, the types of prey captured by pitchers with and without crab spiders changed. The spiders were able to capture and subdue insects like flesh flies, which normally aren’t captured by Nepenthes pitchers. As such, the resident crab spiders make available a larger suite of potential prey than would be available if they weren’t using the pitchers as hunting grounds.

Nepenthes_gracilis_mass.jpg

The crab spiders may benefit the pitcher plant in other ways as well. Research on crab spiders has shown that their bodies are covered in pigments that register high in the UV spectrum. Insects can see UV light and often use it as a means of finding flowers as plants often produce UV-specific pigments in their floral tissues. The wide array of UV patterns on flowers are there to guide their pollinators into position. Researchers have documented that insects are actually more likely to visit flowers with crab spiders than those without, which has led to the idea that UV pigments in crab spiders actually act as insect attractants. Visiting insects simply cannot resist the UV stimulus and quickly fall victim to the resident crab spider.

Could it be that by taking up residence on a Nepenthes pitcher, the crab spiders are increasing the likelihood of insects visiting the traps? This remains to be seen as such questions did not fall under the scope of this investigation. That being said, it certainly offers tantalizing evidence that there is more to the Nepenthes-crab spider relationship. More work is needed to say for sure but the closer we look at such interactions, the more spectacular they become!

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

Not All Pitchers Are Equal: How Prey Capture Has Driven Speciation in the genus Nepenthes

Species of the genus Nepenthes are as bizarre as they are beautiful. Known the world around for their carnivorous lifestyle, these plants looks like something out of a macabre art exhibit. It is easy to get caught up in this beauty. I often find myself lost in thought while staring at full grown specimen. How did this genus come to be? Why are they so diverse? What is going on with the morphology of these plants?

Nepenthes hail from nutrient poor habitats, which has driven them to supplement their growth with nutrients gained via the breakdown of a variety of organisms. The business ends of a Nepenthes are their pitchers. We get so caught up in the bewildering diversity of shapes, colors, and sizes that we often overlook them as the anatomical marvels of evolution that they truly are. Whereas the main body of these plants often look quite similar among different species, it's the pitchers that really allow us to separate them out as distinct species. Pitcher morphology not only gives us a convenient means to identify these plants, research is now showing that the structure of these pitchers is likely to be the driving force in their evolution. 

Let's back up for a second. Before we get to the subject of adaptive radiation, we should take a closer look at the anatomy of these plants. To put it simply, the pitchers of Nepenthes are actually leaves, albeit highly modified versions. What we readily recognize as the photosynthetic leaves of a Nepenthes plant are actually modified leaf bases or petioles. Over evolutionary time, these bases have flattened to increase the amount of surface area available for photosynthesis.

From the tip of each of these "leaves" is produced a tendril. Gradually this tendril will elongate and the tip starts to swell. This tip will eventually become the pitcher. The pitchers themselves are highly modified leaves. They are some of the most specialized leaves in all of the plant kingdom. As the tip grows larger, it becomes clear that there is a distinctive lid apparatus. Once the pitcher is fully mature, this lid pops open revealing the death trap filled with digestive fluids.

As if producing pitchers wasn't cool enough, each species of Nepenthes produces two distinct forms - lower pitchers, which are produced by young plants as well as on mature plants near the ground, and upper pitchers, which are produced up on the climbing stems as they vine through the canopy. The upper and lower pitchers look radically different from one another to the point that one may easily confuse them for different species. The reason for such stark differences has to do with the type of prey captured. Lower pitchers are generally larger and can capture prey that crawls along the forest floor. Upper pitchers tend to be more slender and most often capture flying insects as well as other creepy crawlies hanging out in the forest canopy.

The key to the success of these traps seems pretty straight forward - insects attracted by bright colors and sweet nectar land on the traps and fall to their death. Certainly this holds true throughout the genus, however, there are at least two major variations on this theme and a handful of bizarre mishmashes. As the lid of a Nepenthes pitcher starts to open, a ring of tissue called the peristome unfurls. The shape and color varies wildly between species and this has to do with the methods in which they capture their prey. These variations are the key to the amazing diversity of Nepenthes we see throughout the range of this genus.

Nepenthes vogelii

Nepenthes vogelii

The first of the three strategies is referred to as the 'insect aquaplaning' strategy. Insects walking around on the peristome of the pitcher find it hard to get a foothold. These are species such as N. raja, N. ampullaria, and N. bicalcarata (just to name a few). The slipperiness of the peristome of these species is further enhanced when humidity is high. Considering how much it rains in these habitats, it is no wonder why capture efficiency is often as high as 80%. Although there is some variation on this theme, pitchers that utilize the insect aquaplaning strategy often lack waxy cells on the interior of the pitcher walls.

Slippery pitcher walls are the second strategy that Nepenthes have converged upon. These are species such as N. diatas, N. mirabilis, and N. alata (again, just to name a few) Insects attracted to the pitchers are often lured in by sweet nectar. Once they cross the lip of the pitcher, prey find it hard to hang on and inevitably fall inside. Once this happens, waxy cells lining the interior walls make it impossible for anything to climb back out. It should be mentioned that a slippery peristome and waxy pitcher walls are not mutually exclusive. That being said, there are clear trends among species that show a reduction in waxy cells as peristome size and slope increases.

This brings us to the oddballs. There are species like N. lowii, whose pitchers function as a toilet bowl for shrews, and N. aristolochioides, whose pitchers seemed to have abandonded both strategies and now function as light traps similar to what we see in Darlingtonia. Regardless of their strategy, the diversity in trapping mechanisms appear to be the driving force behind the bewildering diversity of Nepenthes

Nepenthes aristolochioides

Nepenthes aristolochioides

All of the evidence taken together shows that prey capture is at the core of this radiation. There seems to be incredibly strong selective pressures that result in strong divergence in pitcher morphology. The disruptive selection that seems to be driving a wedge between the insect aquaplaning strategy and the waxy wall strategy may have its roots in reducing competition. Nutrients are low and competition for food is high. Different Nepenthes species could be evolving to capture different kinds of prey. Even closely related species such as N. ampullaria, N. rafflesiana, N. mirabilis, N. albomarginata, and N. gracilis all seem to occupy their own unique spot on the spectrum of prey capture strategy.

It could also be that Nepenthes are responding to the specific characteristics of the habitats in which they are found. Those inhabiting drier sites may favor the waxy wall strategy whereas those living in wetter habitats tend to favor the slippery peristome. More work needs to be done to investigate where and how these different strategies are maximized. Until then, I think it is safe to say that the diversity of this incredible genus has a lot to do with obtaining food. 

Photo Credits: [1] 

Further Reading:

[1] [2] [3]