Understanding how individual species are going to respond to climate change requires far more nuanced discussions than most popular media outlets are willing to cover. Regardless, countless scientists are working diligently on these issues each and every day so that we can attempt to make better conservation decisions. Sometimes they discover that things aren't panning out as expected. Take, for instance, the trees of eastern North America.
Climate change predictions have largely revolved around the idea that in response to warming temperatures, plant species will begin to track favorable climates by shifting their ranges northward. Of course, plants do not migrate as individuals but rather generationally as spores and seeds. As the conditions required for favorable germination and growth shift, the propagules that end up in those newly habitable areas are the ones that will perform the best.
Certainly data exists that demonstrates that this is the case for many plant species. However, a recent analysis of 86 tree species native to eastern North America suggests that predictions of northward migration aren't painting a full picture. Researchers at Purdue University found that a majority of the species they looked at have actually moved westward rather than northward.
Of the trees they looked at, 73% have increased their ranges to the west whereas only 62% have increased their ranges northward. These data span a relatively short period of time between 1980 and 2015, which is even more surprising considering the speed at which these species are moving. The team calculated that they have been expanding westward at a rate of 15.4 km per decade!
These westward shifts have largely occurred in broad-leaf deciduous trees, which got the team thinking about what could be causing this shift. They suspected that this westward movement likely has something to do with changes in precipitation. Midwestern North America has indeed experienced increased average rainfall but still not nearly as much as eastern tree species are used to getting in their historic ranges. Taken together, precipitation only explains a small fraction of the patterns they are observing.
Although a smoking gun still has not been found, the researchers are quick to point out that just because changes in climate can not explain 100% of the data, it nonetheless plays a significant role. It's just that in ecology, we must consider as many factors as possible. Decades of fire suppression ,changes in land use, pest outbreaks, and even conservation efforts must all be factored into the equation.
Our world is changing at an ever-increasing rate. We must do our best to try and understand how these myriad changes are going to influence the species around us. This is especially important for plants as they form the foundation of every major terrestrial ecosystem on this planet. As author John Eastman so eloquently put it "Since plants provide the ultimate power base for all the food and energy chains and webs that hold our natural world together, they also form the hubs of community structure and thus the centers of our focus."
Further Reading: [1]