History of Grass Evolution Written in Dinosaur Poop

Photo by Sugeesh licensed by CC BY-SA 3.0

Photo by Sugeesh licensed by CC BY-SA 3.0

Grasses dominate our planet today but that has not always been the case. Because of both their ecological and cultural importance , the origin and diversification of grasses has long been a hot topic in biology. We know that grasses really hit their stride following the extinction of the dinosaurs, and that they changed herbivore anatomy in a big way, but their origins remain shrouded in mystery. Recently, a discovery made in fossilized dinosaur poop has shone a surprisingly bright light into the history of grasses on our planet.

Prior to this discovery, the earliest evidence of grasses came in the form of fossilized pollen and tiny pieces of silica called phytoliths. Phytoliths are essentially tiny pieces of glass that serve as a form of defense against herbivores. Because they are made of silica and fossilize well, phytoliths turn up frequently in the fossil record. This makes them extremely useful for finding evidence of grasses even where whole-plant fossilization is unlikely.

Illustration by Nobu Tamura (http://spinops.blogspot.com) licensed by CC BY-NC-ND 3.0

Illustration by Nobu Tamura (http://spinops.blogspot.com) licensed by CC BY-NC-ND 3.0

phytolith.JPG

Whereas phytoliths are not unique to grasses, their form is often taxon-specific. With a good eye and a bit of training, one can look at a phytolith under a microscope and tell you what type of plant it came from. This is where the dinosaur poop comes into the picture. By examining fossilized dinosaur poop from India, paleontologists can get an idea of what dinosaurs were eating.

By examining the fossilized poop of a group of large herbivorous dinosaurs called Titanosaurs, paleontologists now have a better idea of grass diversity in the late Cretaceous. They have uncovered a surprising diversity of phytoliths, which demonstrate that at least 5 distinct grass taxa that we would recognize today were alive and well some 100.5 to 66 million years ago. These include extant groups like Oryzoideae (think rice and bamboo), Puelioideae, and Pooideae (think wheat, barley, oat, rye, and many lawn and pasture grasses). There were other lesser known lineages mixed in there as well.

Fossilized dinosaur poop or “coprolite.” USGS Public Domain

Fossilized dinosaur poop or “coprolite.” USGS Public Domain

These findings are exciting for a variety of reasons. For one, it tells us that despite lacking teeth specialized for eating grasses, large herbivorous dinosaurs like the Titanosaurs were nonetheless incorporating these plants into their diet. It also tells us that grasses were already quite diverse by the late Cretaceous. The fact that modern clades of grass were around back then sets back grass evolution many millions of years. It also tells us something about grass biogeography. It suggests that grasses were already wide spread across the supercontinent of Gondwana long before India broke away. Finally, it tells us that grasses evolved silicate phytoliths long before more recognizable grass-eating herbivores came onto the scene.

I am always blown away by the details paleontologists are able to extract from such tiny fossils. Who knew dinosaur poop could tell us so much?

Photo Credits: [1] [2] [3] [4]

Further Reading: [1]


The Hidden Anatomy of Grass Flowers

14344128_1475745312452329_2661359320953108752_n.jpg

Grass flowers have their own unique beauty. Examine them with a hand lens and a whole new world of angiosperm diversity suddenly opens up. Unlike other flowering plants, their charm lies not in showy sepals or petals, but in an intricacy centered around the utilization of wind for pollination. However, such floral organs are not lacking. Grass flowers do in fact produce a perianth, the function of which has been highly modified.

20217692280_ac716c1813_b.jpg

To see what I am referring to, you need to do some dissection under a scope. Pull off a flower and peel away the sheaths (the palea and lemma) that cover it. Inside you will see an ovary complete with feathery stigmas as well as the anthers. At the base of the ovary sits a pair of scales called lodicules. These lodicules are thought to be the rudimentary remains of the perianth. They certainly don't resemble sepals or petals but that is because the function of these structures is not to attract pollinators. They assist in pollination in another way.

Photo by Matt Lavin CC BY-SA 2.0

Photo by Matt Lavin CC BY-SA 2.0

When grass flowers are ready for reproduction, the lodicules begin to swell. This swelling serves to push apart the rigid palea and lemma that protected the flowering parts as they developed. Once apart, the anthers and stigma are free to emerge and let wind do the dirty work for them. Lodicules differ quite a bit from species to species in their size, shape, and overall appearance. Much of this is likely tied to the overall structure in grass flowers.

Photo Credits: [1] [2]

Further Reading: [1]

 

Hyperabundant Deer Populations Are Reducing Forest Diversity

Photo by tuchodi licensed under CC BY 2.0

Photo by tuchodi licensed under CC BY 2.0

Synthesizing the effects of white-tailed deer on the landscape have, until now, been difficult. Although strong sentiments are there, there really hasn't been a collective review that indicates if overabundant white-tailed deer populations are having a net impact on the ecosystem. A recent meta-analysis published in the Annals of Botany: Plant Science Research aimed to change that. What they have found is that the overabundance of deer is having strong negative impacts on forest understory plant communities in North America.

White-tailed deer have become a pervasive issue on this continent. With an estimated population of well over 30 million individuals, deer have been managed so well that they have reached proportions never seen on this continent in the past. The effects of this hyper abundance are felt all across the landscape. As anyone who gardens will tell you, deer are voracious eaters.

Tackling this issue isn't easy. Raising questions about proper management in the face of an ecological disaster that we have created can really put a divide in the room. Even some of you may be experiencing an uptick in your blood pressure simply by reading this. Feelings aside, the fact of the matter is overabundant deer are causing a decline in forest diversity. This is especially true for woody plant species. Deer browsing at such high levels can reduce woody plant diversity by upwards of 60%. Especially hard hit are seedlings and saplings. In many areas, forests are growing older without any young trees to replace them.

What's more, their selectivity when it comes to what's on the menu means that forests are becoming more homogenous. Grasses, sedges, and ferns are increasingly replacing herbaceous cover gobbled up by deer. Also, deer appear to prefer native plants over invasives, leaving behind a sea of plants that local wildlife can't readily utilize. It's not just plants that are affected either. Excessive deer browse is creating trophic cascades that propagate throughout the food web.

For instance, birds and plants are intricately linked. Flowers attract insects and eventually produce seeds. These in turn provide food for birds. Shrubs provide food as well as shelter and nesting space, a necessary requisite for healthy bird populations. Other studies have shown that in areas that experience the highest deer densities songbird populations are nearly 40% lower than in areas with smaller deer populations. As deer make short work of our native plants, they are hurting far more than just the plants themselves. Every plant that disappears from the landscape is one less plant that can support wildlife.

Sadly, due to the elimination of large predators from the landscape, deer have no natural checks and balances on their populations other than disease and starvation. As we replace natural areas with manicured lawns and gardens, we are only making the problem worse. Deer have adapted quite well to human disturbance, a fact not lost on anyone who has had their garden raided by these ungulates. Whereas the deer problem is only a piece of the puzzle when it comes to environmental issues, it is nonetheless a large one. With management practices aimed more towards trophy deer than healthy population numbers, it is likely this issue will only get worse.

Photo Credit: tuchodi (http://bit.ly/1wFYh2X)

Further Reading:
http://aobpla.oxfordjournals.org/content/7/plv119.full

http://aobpla.oxfordjournals.org/content/6/plu030.full

http://www.sciencedirect.com/science/article/pii/S0006320705001722