Bearcorn: A Mysterious Parasite from Eastern North America

187440193_508864996916369_3938182517485459260_n.jpg

Bearcorn (Conopholis americana) is one of those plants that really challenges mainstream assumptions of what a plant should look like. It produces no leaves, no chlorophyll, and all you ever see of it are its strange reproductive structures. One can easily be forgiven for thinking they had encountered some type of fungus.

Bearcorn is an obligate parasite on oak trees. It simply can’t exist without access to oak roots. From what I have been able to gather, the preferred hosts of bearcorn are the red oaks (section Lobatae). That is not to say the exceptions have not been documented. At least one author claims to have found bearcorn attached to the roots of a white oak (Quercus alba) and even earlier work suggests that American chestnut (Castanea dentata) may have served as an occasional host as well. Regardless, if you want to find bearcorn in the woods, you would do well to search out red oaks first.

According to those who have run germination trials, bearcorn seeds must be in close proximity to oak roots in order to germinate. Some sources say that direct contact is needed whereas others claim that seeds have to be close enough to detect root presence. It is likely that some sort of chemical cue is what initiates the process and this makes sense. For a plant that relies completely on another plant for its water and nutritional needs, it doesn’t make much sense for bearcorn seeds to germinate anywhere but near oak roots.

191351811_3810824949026765_8706180753037096070_n.jpg

Upon germinating, the tiny seedling needs to act fast before its meager energy reserves are exhausted. If lucky, the growing seedling will come into contact with an oak root and begin developing a strange organ referred to as the nodule or tubercle. Thus begins its parasitic lifestyle. The tubercle continues to grow throughout the life of the plant, developing into an amorphous, woody blob that continues to envelope more and more oak roots. Its within the tubercle that all of the parasitism takes place.

Cells within the bearcorn tubercle penetrate into the vascular tissues of the oak root, stealing all the water and nutrients the plant will ever need. Over time, the bearcorn tubercle coaxes the roots of the oak to fan outward like the crown of a tiny tree. In doing so, bearcorn is effectively increasing the amount of surface area available to make more parasitic connections. Apparently this all comes at great cost to the oak roots. Over time, oak root size within the tubercle greatly diminishes until some completely perish. Considering the size of some bearcorn populations, one could expect the oak host to fight back.

Indeed, it would appear that oaks are not helpless against bearcorn infestations. Examination of the cells within bearcorn tubercles revealed that as the parasite grows, the oak will begin flooding the infected cells with tannin-rich compounds. Apparently this serves to slow the flow of water and nutrients into the tubercle. There is even evidence that some of those tannins are transferred into the bearcorn tubercle, leading some to suggest that the oak is literally poisoning its bearcorn parasites, albeit slowly.

187561698_570265357287320_2666024201654165137_n.jpg

There is a strong possibility that such oak defenses lend to the relatively short lifespan of bearcorn plants. In at least one study I read, no bearcorn individuals over 13 years of age were found and the average age is estimate to be about 10 years. Perhaps just over a decade is about all a bearcorn can hope for once the its oak host begins to fight back. Good thing bearcorn populations can be surprisingly fecund.

Bearcorn plants reach reproductive maturity at after about 3 years of growth. They flower in the spring and that is when they are at their most obvious. Numerous thick, finger-like stems emerge from the ground covered in whirls of cream-colored, tubular flowers. Though a dense population of flowering bearcorn may look like a bonanza for pollinators, they don’t seem to attract a lot of attention. From what I was able to find, bumblebees are pretty much the only insects to visit the flowers, and even then, visitation rates are low. Apparently bearcorn flowers do not produce any detectable scent nor are they full of nectar. I guess the only real reward is a meager helping of pollen.

Photo by Joshua Mayer licensed under CC BY-SA 2.0

Photo by Joshua Mayer licensed under CC BY-SA 2.0

No matter, bearcorn has a nice reproductive trick to ensure plenty of seeds are produced each year - it selfs. The anatomy of the flowers is such that, at maturity, the anthers are in direct contact with the stigma. Even if nothing visits a bloom, it will still go on to clone itself year after year. Once fertilized, each flower gives way to a large fruit chock full of seed. This is where the corn part of the name bearcorn comes from. A stem thick with fruits does resemble a strange, albeit juicy ear of corn sitting on the forest floor. The bear part of the name likely has to do with the fact that bear readily consume bearcorn fruits, stem and all. Working in the southern Appalachian Mountains, I can’t tell you how many times I came across bear scat absolutely loaded with bearcorn fruits and seeds. It’s not just bear either, deer are also very interested in bearcorn fruits.

Lucky for bearcorn, its seeds pass through the guts of these animals unharmed. Hopefully, with a bit of luck, at least one of these animals will make a deposit in an oak-rich region of the forest. With even more luck, some of those seeds might even find themselves nestled in near an oak root to begin the process anew.

Further Reading: [1] [2] [3]




When is a mushroom not a mushroom? When it is a Maltese mushroom, of course!

Photo by Hans Hillewaert licensed under CC BY-ND 2.0.

Photo by Hans Hillewaert licensed under CC BY-ND 2.0.

Meet Cynomorium coccineum aka the Maltese mushroom. Despite the common name and overall appearance, this is not a fungus. It is indeed a plant. Cynomorium coccineum is a holoparasite. It produces no chlorophyl of its own and relies solely on a host plant for all of its water and nutrient needs. It is said to parasitize the roots of halophytes or salt-loving plants and thus, is most commonly found growing in salt marshes in addition to dry, sandy habitats in coastal areas.

Cynomorion_ex_Michelius.jpg

Native to the Mediterranian region and extending into parts of Afghanistan, Saudi Arabia, Iran, and Central Asia, this species is really only ever found during the rainy season. Most of its life is spent underground, emerging only to display its flowers. Only when enough energy has been garnished from the host will this plant throw up these strange flower spikes. As you can tell from the picture, the spikes are jam packed with highly reduced flowers. The flowers give off a scent that has been likened to cabbage. It is thought that flies take up the bulk of the pollination of these blooms.

Photo by Alastair Rae licensed under CC BY-ND 2.0.

Photo by Alastair Rae licensed under CC BY-ND 2.0.

Photo by Hans Hillewaert licensed under CC BY-ND 2.0.

Photo by Hans Hillewaert licensed under CC BY-ND 2.0.

As you can probably guess by its strange appearance, the taxonomic affinity of this strange parasite has been the subject of much debate. For a long time, many botanists placed it in the family Balanophoraceae but more recent genetic work suggests it belongs in its own family, Cynomoriaceae. It is the only genus within that family but interestingly enough, Cynomoriaceae is located within the order Saxifragales, somewhere near Crassulaceae, making it a distant relative of stonecrops like sedum. No matter where its located on the tree of life, Cynomorium coccineum is surely one of the strangest plants on Earth.

Photo Credits: [1] [2]

Further Reading: [1] [2]

Feed Me, Seymour!

Photo by Ebony Black Public Domain

Photo by Ebony Black Public Domain

In the spirit of spooky-ness, today I would like to introduce you to some of the most bizarre looking plants on our planet. I am of course talking about the genus Hydnora. Known locally as jakkalskos (jackal food) or bobbejaankos (baboon food), these odd parasites certainly look creepy. However, their ecology is downright fascinating and well worth a closer look.

Hydnora comprises roughly seven species and currently resides in its own family, Hydnoraceae. More recent taxonomic work suggests that this may actually be a subgroup within the family Aristolochiaceae, but as far as I know, the jury is still out on this. All species are native to southern Africa and as you can probably tell from the picture, they produce no leaves and no chlorophyll. Instead of wasting energy on producing its own food, Hydnora has resorted to parasitism. They are root parasites on members of the family Euphorbiaceae. They tap into the roots of their host plants using specialized structures called "haustoria." In this way they are able to gather all their nutritional needs from their host. Once a Hydnora has obtained enough energy it will produce a flower.

The flower is all you will ever see of this plant. The strange, scaly structure emerges from the ground underneath its host. Three slits begin to form, each lined with white, hair-like structures. At first these structures remain intact. The spaces between are just big enough to allow entry of pollinators, which in this case are dung beetles. Once the flower opens these slits it begins to produce some heat, not unlike what we see in many aroids. The heat helps to spread the scent and the smell is what you would expect from a plant trying to attract dung beetles - it smells like feces.

Photo by Charles Stirton licensed under CC BY-NC-ND 2.0

Photo by Charles Stirton licensed under CC BY-NC-ND 2.0

When a dung beetle arrives looking for some fresh poop, it enters the flower through those slits and falls down into the trap. The rest of the flower consists of a tube-like structure underground. To keep the beetles from escaping, Hydnora employs a trick used by many carnivorous pitcher plants. Lining the walls are downward pointing hairs that prevent the beetles from crawling out before their job is done. Once inside, the beetles are drawn to the center where the smell is emitted. Here they are dusted with generous amounts of pollen. If the beetles have arrived after a previous Hydnora visit then they will also deposit pollen and thus reproduction is achieved. Once the plant releases pollen onto the beetles, the hairs lining the wall relax and the slits open completely, allowing the beetles to escape.

I hope some day to see one of these in person. To the best of my knowledge, only a single species (Hydnora africana) has ever been grown in cultivation and that was a single event. Seeds were sown in a pot containing a known host species of Euphorbia. It took a very long time for germination and even longer to mature and produce a flower. Either way this creepy species is actually quite fascinating.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3]