Your string of pearls (and its cousins) are all members of the daisy family

Photo by LynnK827 licensed by CC BY-NC-ND 2.0

Photo by LynnK827 licensed by CC BY-NC-ND 2.0

I love the spike in popularity of houseplants. The more popular indoor gardening becomes, the more plants become available for obsessive growers such as myself. If you are like me, then learning about the ecological and evolutionary history of the plants you keep makes them all the more special. Take, for instance, a small group of scrambling succulents affectionately referred to as “string of pearls,” “string of bananas,” and “string of tears.” These all make incredible houseplants if given the proper care, but they become all the more interesting when you realize that they are distant cousins of the dandelions growing in your yard.

That’s right, each of these species are highly derived members of the daisy family (Asteraceae). Their taxonomy has been a bit wonky over the years. When I first took interest in these succulents, they resided in the genus Senecio. Some authors have suggested moving them into the genus Kleinia or Cacalia, but current systematics suggests they belong in a genus of their own - Curio. Inspection of the relationships within this group reveals that closely related species have evolved slightly different growing habits. The plants I will be focusing on for this article each resemble creeping vines but many of their close relatives are less vine-like but nonetheless still creep along the ground. For the sake of this piece, I am going to stick with the genus Senecio because, regardless of their taxonomic placement, the “sting of” clade is super fascinating from an ecological standpoint.

Senecio citriformis photo by Salchuiwt licensed by CC BY-SA 2.0

Senecio citriformis photo by Salchuiwt licensed by CC BY-SA 2.0

Senecio radicans photo by KENPEI licensed by CC BY-SA 3.0

Senecio radicans photo by KENPEI licensed by CC BY-SA 3.0

All of these stringy plants hail from arid regions of South Africa. In the wild, they mostly scramble over rocks and bushes, often emerging out of cracks in rock in search of the right microclimate. Their oddly shaped, succulent leaves are an evolutionary adaptation to the tough conditions in which they evolved. The most leaf-like anatomy belongs to that of the string of bananas (S. radicans). Each leaf of S. radicans is shaped like a tiny green banana. More extreme versions of leaf morphology are found in the string of tears (S. citriformis) and string of pearls (S. rowleyanus & S. herreianus). The leaves of these three species resemble peas in shape, size and color. The leaves of S. rowleyanus are more spherical in shape (pearls), whereas the leaves of S. citriformis taper towards the tip (tears).

Senecio herreianus photo by Frank Vincentz licensed by CC BY-SA 3.0

Senecio herreianus photo by Frank Vincentz licensed by CC BY-SA 3.0

Though all of these species grow in dry habitats, the more spherical shaped leaves of S. rowleyanus and S. citriformis are thought to be best adapted for drought. In growing spherical leaves, these plants are taking advantage of the surface area to volume ratio of a sphere. The benefit of this is that these species are able to maximize water storage while minimizing the amount of leaf surface exposed to the blistering sun. This way the leaves are able to maintain high levels of photosynthesis without overheating, all the while reducing leaf temperature.

In each of these species, the surface or adaxial side of the leaf exhibits a translucent window that runs the length of the leaf. It has long been hypothesized that leaf windows allow light to transmit into deep into the interior of the leaf where the photosynthetic machinery resides. More recent experiments on window-leaved succulents suggests that reality is not that simple. Instead, these windowed surfaces appear to allow the plant to maintain healthy levels of photosynthesis without the damaging their leaves via overheating.

Photo by Frank Vincentz licensed by CC BY-SA 3.0

Photo by Frank Vincentz licensed by CC BY-SA 3.0

When plants reach maturity, flowering can be prolific. Thin stems topped with tiny composite heads of cream-colored flowers erupt from the mat of vegetation. Then and only then do these plants readily reveal their placement within the daisy family. The inflorescence is made up entirely of discoid flowers. There are no rays like that of a sunflower. The flowers themselves are said to produce a pleasant odor frequently described as sweet and spicy. After pollination, the flowers give way to seeds topped with a parachute-like pappus that will carry them far and wide on the wind.

Learning about the natural history of these plants has given me a whole new appreciation of these strange, succulent members of the daisy family. What’s more, there is a whole world of succulent asters out there (a post for a later time) and many of them are equally as fascinating and beautiful.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

The Succulent Passionflowers

Photo by Wendy Cutler licensed by CC BY-SA 2.0

Photo by Wendy Cutler licensed by CC BY-SA 2.0

Succulent passionflowers?! It took me a minute to get my head wrapped around the idea. It wasn’t until I saw one in flower that I truly understood. The genus Adenia is found throughout east and west Africa, Southeast Asia, and hits its peak diversity in Madagascar. It comprises approximately 100 species and, as a whole, is poorly understood. Today I would like to introduce you to this bizarre genus within Passifloraceae.

Adenia glauca Photo by Karelj licensed under the GNU Free Documentation License

Adenia glauca Photo by Karelj licensed under the GNU Free Documentation License

Adenia is, to date, the second largest genus within the Passionflower family and yet delineating species has been something of a nightmare for botanists over the years. At least some of this confusion lies within the diversity of this odd group. It has been said that few angiosperm lineages surpass Adenia in the diversity of growth forms they exhibit. Though all could be considered succulent to some degree, Adenia runs the gamut from trees to vines, and even tuberous herbs.

3505817218_274303366e_o.jpg

Even within individual species, the overall form of these plants can vary widely depending on the conditions under which they have been growing. Their succulent nature and that fact that many species can reach rather large proportions means that herbarium records for this group are scant at best. Many are only known from a single, incomplete collection of a few bits and pieces of plant. Also, juvenile plants often look very different from their adult forms, making timing of the collection crucial for proper analysis.

To complicate matters more, all Adenia are dioecious, meaning that individual plants are either male or female. Male and female flowers of individual species look pretty distinct and differ a bit from what we have come to expect out of the passionflower family. Often collections were made on only a single sex. This is further complicated by the fact that these plants often exhibit very short flowering seasons. Most come into bloom right before the onset of the rainy season and are entirely leafless at that point in time. Because of this, it has been extremely difficult to accurately match flowering collections to vegetative collections. As such, nearly 1/4 of all Adenia species are missing descriptions of either male or female flowers and their fruits.

Female flower of Adenia reticulata. Photo by C. E. Timothy Paine licensed under CC BY-NC 2.0

Female flower of Adenia reticulata. Photo by C. E. Timothy Paine licensed under CC BY-NC 2.0

Male flowers of Adenia digitata. Photo by Joachim Beyenbach licensed under CC BY-SA 3.0

Male flowers of Adenia digitata. Photo by Joachim Beyenbach licensed under CC BY-SA 3.0

Flowers of Adenia firingalavensis.  Photo by voyage-madagascar.org licensed under CC BY 2.0

Flowers of Adenia firingalavensis. Photo by voyage-madagascar.org licensed under CC BY 2.0

Fruits of Adenia hondala

Fruits of Adenia hondala

Even genetic work has failed to clear up much of the mysteries that surround this group. Some studies suggest that Adenia is sister to all other genera within Passifloraceae whereas others have even suggested it to be nestled neatly within the genus Passiflora. The most recent work hints at a placement among the tribe Passifloreae. If this confuses you, you are certainly not alone. Until a more complete sampling effort is done on Adenia, I think it is safe to say that this genus will be holding onto its taxonomic mysteries for the foreseeable future.

Adenia globosa photo by KENPEI licensed under the GNU Free Documentation License

Adenia globosa photo by KENPEI licensed under the GNU Free Documentation License

All Adenia are perennial plants but how they manage this differs from species to species. Some put all of their energy into underground tubers, producing annual stems and leaves that die back each year. Others don’t produce any tubers and instead store all of their water and nutrients within thick stems. This has made at least a handful of species a hit with succulent growers around the world. It is always an interesting sight to see a giant caudiciform trunk or base with bunches of spindly stems spraying out from the top.

Leaves and fruit of Adenia cissampeloides. Photo by International Institute of Tropical Agriculture licensed under CC BY-NC 2.0

Leaves and fruit of Adenia cissampeloides. Photo by International Institute of Tropical Agriculture licensed under CC BY-NC 2.0

Juvenile Adenia glauca.  Photo by laurent houmeau licensed under CC BY-SA 2.0

Juvenile Adenia glauca. Photo by laurent houmeau licensed under CC BY-SA 2.0

Adenia are also extremely toxic plants. The conditions under which these plants evolved are tough and it appears that this group doesn’t want to take any chances on losing any biomass to herbivores. The main class of compounds they produce are called lectins. These proteins cause myriad issues within animal bodies including rapid cell death, blood clotting, inhibition of protein synthesis, and a disruption of ribosome and DNA function. Needless to say, its in any critters best interest to avoid nibbling on any species of Adenia. Even handling and pruning of these plants merits caution.

Photo by Wendy Cutler licensed under CC BY 2.0

Photo by Wendy Cutler licensed under CC BY 2.0

Whether you’re a botanist, taxonomist, gardener, or just curious about plant diversity, Adenia is a wonderful example of just how many unknowns are still out there. Regardless of their taxonomic status, these are fascinating species, each with a wonderful ecology and intriguing evolutionary history. These plants are hardy survivors and a great example of the lengths a genus can go to when presented with new opportunities. Undoubtedly many more species await description but the plants we currently know of are fascinating to say the least.

Adenia pechuelii. Photo by Ewald Schmidt licensed under public domain.

Adenia pechuelii. Photo by Ewald Schmidt licensed under public domain.

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Further Reading: [1] [2]

The Mystery of the Ghost Plant

Photo by Felipe Fenrisvarg licensed under CC BY-NC-SA 2.0

Photo by Felipe Fenrisvarg licensed under CC BY-NC-SA 2.0

As houseplants enjoy a resurgence in our culture, untold numbers of novice and expert growers alike will have undoubtedly tried their luck at a succulent or two. Succulent, of course, is not a taxonomic division, but rather a way of describing the anatomy of myriad plants adapted to harsh, dry environments around the world. One of the most common succulents in the trade is the ghost plant (Graptopetalum paraguayense).

I would bet that, if you are reading this and you grow houseplants, you have probably grown a ghost plant at one point or another. They are easy to grow and will propagate a whole new plant from only a single leaf. Despite its worldwide popularity, the ghost plant is shrouded in mystery and confusion. To date, we know next to nothing about its ecology. Much of this stems from poor record keeping and the fact that we have no idea exactly where this species originated.

That's right, we do not know the location of its native habitat. Records indicate that the first plants to find their way into human hands were imported into New York in 1904. Apparently, they were growing as "weeds" at the base of some South American cacti. Plants were lucky enough to wind up in the hands of competent botanists and the species has ended up with the name Graptopetalum paraguayense. The specific epithet "paraguayense" was an indication of much confusion to come as it was thought that the ghost plant originated in Paraguay.

Time has barely improved our knowledge. Considering many of its relatives hail from Mexico, it gradually became more apparent that South America could not claim this species as its own. Luck changed only relatively recently with the discovery of a population of a unique color variant of the ghost plant on a single mountain in northeastern Mexico. A thorough search of the area did not reveal any plants that resemble the plant so many of us know and love. It has been suggested that the original population from which the type species was described is probably growing atop an isolated mountain peak somewhere nearby in the Chihuahuan Desert.

Despite all of the mystery surrounding this species, we can nonetheless elucidate some aspects about its biology by observing plants in cultivation. It goes without saying that the ghost plant is a species of dry, nutrient-poor habitats. Its succulence and tolerance of a wide array of soil conditions is a testament to its hardy disposition. Also, if plants are grown in full sun, they develop a bluish, waxy coating on their leaves. This is likely a form of sunscreen that the plant produces to protect it from sun scorch. As such, one can assume that its native habitat is quite sunny, though its ability to tolerate shade suggests it likely shares its habitat with shrubby vegetation as well. Given enough time and proper care, ghost plants will produce sprays of erect, 5 pointed flowers. It is not known who might pollinate them in the wild.

It is always interesting to me that a plant can be so well known to growers while at the same time being a complete mystery in every other way. A search of the literature shows that most of the scientific attention given to the ghost plant centers on potentially useful compounds that can be extracted from its tissues. Such is the case for far too many plant species, both known and unknown alike. Perhaps, in the not too distant future, some intrepid botanist will at last scramble up the right mountain and rediscover the original habitat of this wonderful plant. Until then, I hope this small introduction provides you with a new found appreciation for this wonderfully adaptable houseplant.

Photo Credits: [1]

Further Reading: [1] [2] [3]

 

A Surprising Realization About Leaf Windows

lithos.JPG

I will never forget the first time I laid eyes on a Lithops. These odd little succulents are truly marvels of evolution. The so-called "living stones" really do earn their name as most are exquisitely camouflaged to match the gravelly soils in which they grow. If bizarre color patterns weren't enough, Lithops, as well as many other succulents, live their lives almost completely buried under the soil. All one ever really sees is the very tip of their succulent leaves and the occasional flower.

Marloth-Lithops-drawing.jpg

It is the tips of those leaves that make people swoon. Lithops belong to a hodgepodge mix of succulent genera and families that produce windowed leaves. Aside from their striking patterns, the tips of their leaves are made up of layers of translucent cells, which allow light to penetrate into the interior of the leaf where the actual photosynthetic machinery is housed. Their semi-translucent leaves, coupled with their nearly subterranean habit, have led to the assumption that the leaf windows allow the plants to continue photosynthesis all the while being mostly buried. Despite the popularity of this assumption, few tests had been performed to see whether or not the windows function as we think. All of that changed back in the year 2000.

As hinted at above, a variety of succulent plants have converged on a similar leaf morphology. This is where things get a bit strange. Not all plants that exhibit the leaf window trait find themselves buried in the soil. Others, such as Peperomia graveolens for example, produce the photosynthetic tissues on tall stems. Examples like this led at least some researchers to second guess the common assumption of windows increasing photosynthesis and the resulting investigations were surprising to say the least. 

Peperomia graveolens. © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

Peperomia graveolens. © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

A duo of researchers decided to test the assumption that leaf windows increase photosynthesis by channeling light directly to the photosynthetic machinery inside. The researchers used tape to cover the leaf windows of a variety of succulent plant species. When they compared photosynthetic rates between the two groups, not a single difference was detected. Plants who had their leaves covered photosynthesized the same amount as plants with uncovered leaves. These data were quite shocking. Because they tested this assumption across a variety of plant species, the results suggested that the function of windowed leaves isn't as straight forward as we thought. These findings raised more questions than they solved.

Subsequent experiments only served to reinforce the original findings. What's more, some even showed that plants with covered windows actually photosynthesized more than plants with uncovered windows. It seems that windowed leaves function in a completely opposite manner than the popular assumption. The key to this patterns may lie in heat exchange. When the researchers took the temperature of the interior of the leaves in each group, they found that internal leaf temperatures were significantly higher in the uncovered group and this has important implications for photosynthesis for these species.

High leaf temperatures can be extremely damaging to photosynthetic proteins. If too much light filters through, leaf temperatures can actually hit damaging levels. This is one reason that many of these plant species have adopted this bizarre semi-subterranean habit. Plants that experienced such high temperatures throughout the course of a day had permanent damage done to their photosystems. This led to a reduction of fitness over time. Such lethal temperature spikes did not happen to leaves that had been covered.

Haworthia truncata. Photo by www.haworthia-gasteria.com

Haworthia truncata. Photo by www.haworthia-gasteria.com

If you're anything like me, at this point you must be questioning the role of the leaf windows entirely. Why would they be there if they may actually hurt the plants in the long run? Well, this is where knowing something about the habitat of each species comes into play. Not all leaf windows are created equal. The patterns of their windows vary quite a bit depending on where the plants evolved. In 2012, a paper was published that looked at the patterns of Lithops leaf windows in relation to their place of origin. Not all Lithops grow in the same conditions and various species hail from regions with vastly different climates.

What the paper was able to demonstrate was that Lithops native to regions that experience more average annual rainfall have much larger window areas on their leaves than Lithops native to drier regions. Again, the underpinnings of this discovery nonetheless have to do with light availability. Wetter areas experience more cloud cover than drier areas so Lithops growing where its cloudy have to cope with a lot less sun than their more xeric-growing cousins. As such, having a larger window allows more diffuse light into the leaf for photosynthesis without having to worry about the damaging temperatures.

Photo by Petra licensed under CC BY-NC 2.0

Photo by Petra licensed under CC BY-NC 2.0

The reverse is true for Lithops from drier climates. They have smaller leaf windows because they experience more days with direct sun. Smaller windows means less sunlight entering the leaf. This serves to keep internal leaf temperatures within a much safer range, thus protecting the delicate proteins inside. As it turns out, leaf windows seem to represent a trade-off between photosynthesis and overheating. What's more, some window-leaved species seem to be evolving away from the light transmitting function of their cousins living in shadier conditions. If anything, this serves as a reminder that simply because something seems obvious, that doesn't mean its always true. Stay curious, my friends!

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4] [5] [6]

The Curly-Whirly Plants of South Africa

In a region of South Africa traditionally referred to as Namaqualand there exists a guild of plants that exhibit a strange pattern in their growth habits. These plants hail from at least eight different monocot families as well as the family Oxalidaceae. They are all geophytes, meaning they live out the driest months of the year as dormant, bulb-like structure underground. However, this is not the only feature that unites them.

A walk through this region during the growing season would reveal that members of this guild all produce leaves that at least one author has described as "curly-whirly." To the casual observer it would seem that they had left the natural expanse of the desert flora and entered into the garden of someone with very particular tastes.

What these plants have managed to do is to converge on a morphological strategy that allows them to take full advantage of their unique geographical location. The region along the coastal belt of Namibia is famous for being a "fog desert." Despite receiving very little rain, humid air blowing in from the southwestern Atlantic runs into colder air blowing down from the north and condenses, carrying fog inland. This produces copious amounts of dew.

Normally dew would be unavailable to most plants. It simply doesn't penetrate the soil enough to be useful for roots. This is where those curly-whirly leaves come in. Researchers have discovered that this leaf anatomy is specifically adapted for capturing and concentrating fog and dew. This has the effect of significantly improving their water budget in this otherwise arid region. What's more, the advantages are additive.

The most obvious advantage has to do with surface area. Curled leaves increase the amount of edge a leaf has. This provides ample area for capturing fog and dew. Also, by curling up, the leaves are able to reduce the overall size of the leaf exposed to the air, which reduces the amount of transpiration stress these plants encounter in their hot desert environment. Another advantage is direct absorption. Although no specific organs exist for absorbing water, the leaves of most of these species are nonetheless capable of absorbing considerable amounts.

Dipcadi crispum By roncorylus

Dipcadi crispum By roncorylus

Finally, each curled leaf acts like a mini gutter, channeling water to the base of the plant. Many of these plants have surprisingly shallow root zones. The lack of a deep taproot may seem odd until one considers the fact that dew dripping down from the leaves above doesn't penetrate too deeply into the soil. These roots are sometimes referred to as "dew roots."

I don't know about you but this may be one of the coolest plant guilds I have ever heard about. This is such a wonderfully clear example of just how strong of a selective pressure the combination of geography and climate can be. What's more, this is not the only region in the world where drought-tolerant plants have converged on this curly strategy. Similar guilds exist in other arid regions of Africa, as well as in Turkey, Australia, and Asia.

Albuca spiralis. Photo by Wolf G. licensed under CC BY-NC-ND 2.0

Albuca spiralis. Photo by Wolf G. licensed under CC BY-NC-ND 2.0

Photo Credits: Cape Town Botanist (http://bit.ly/1PzPkP7), www.ispotnature.org, roncorylus (http://bit.ly/1PzPoi6), and Wolf G. (http://bit.ly/1n4Mo6b)

Further Reading: [1]

Tiger's Jaw

 

Photo by Mike Keeling licensed under CC BY-ND 2.0

Photo by Mike Keeling licensed under CC BY-ND 2.0

Behold the ominous beauty of the genus Faucaria. These succulent herbs in the family Aizoaceae are native to South Africa and are known commonly as tiger's jaws. The first time I encountered one of these plants, I was a little hesitant to get too close. Despite their appearance, however, they are rather tame. What looks like a sturdy defense actually has more to do with water.

Faucaria are denizens of the dry. Their stubby, succulent leaves act as water storage devices that allow the plant to go some time without water. As new leaves are produced, they emerge in pairs with their serrated edges interlocking like teeth. Once mature, the edges separate and the pair of leaves open up like a carnivorous maw.

The "teeth" of these "jaws" are a unique adaptation for acquiring extra water. Because it rains infrequently, the plant does its best to take advantage of moisture in the air. The teeth act as condensation points, mopping up dew and fog and directing it towards the roots. In this way, Fucaria are able to maintain themselves even in the absence of rain.

Photo by Mike Keeling licensed under CC BY-ND 2.0

Photo by Mike Keeling licensed under CC BY-ND 2.0

And maintain themselves they do! Like many other members of the family, Faucaria produce unexpectedly large flowers for their size. The blooms erupt from the middle of each pair of leaves, almost as if they were being regurgitated. Seeing a mature population in full bloom is an experience you won't soon forget. 

Photo Credit: [1] [2] [3]

Further Reading: [1]