A Rare Succulent Member of the Milkweed Family

Photo by: Gennaro Re

Photo by: Gennaro Re

Across nearly every ecosystem on Earth, biodiversity tends to follow a pattern in which there are a small handful of very common species and many, many more rare species. It would seem our knowledge of plants follows a similar pattern; we know a lot about a small group of species and very little to nothing about most others. Take, for example, a succulent relative of the milkweeds known to science as Whitesloanea crassa. Despite its occurrence in specialist succulent plant collections, we know next to nothing about the natural history of this species or if it even still exists in the wild at all.

Without flowers, one would be hard pressed to place this odd succulent within a family. Even when in bloom, proper analysis of its taxonomic affinity requires a close inspection of the floral morphology. What W. crassa exhibits is a highly derived morphology well-adapted to its xeric environment. Native to Somalia, it was said to grow on bare ground and its appearance supposedly matches the rocks that dominate its desert habitat. Never producing leaves or branches, the main body of W. crassa consists of a succulent, quadrangular stem that slowly grows upwards as it ages.

Flowers are produced in a dense inflorescence, which is most often situated near the base of the plant. Each flower is very showy at maturity, consisting of a fleshy, fused, 5-lobed corolla decorated in shades of pink and red. As far as I can tell, this is not one of stinkier members of the family. Though I have found pictures of flowers crawling with maggots, most growers fail to comment on any strong odors. In fact, aside from limited care instructions, detailed descriptions of the plant represent the bulk of the scientific information available on this odd species.

Maggots crawling around inside the flowers indicates this species mimics carrion as its pollination mechanism. Photo by: Flavio Agrosi

Maggots crawling around inside the flowers indicates this species mimics carrion as its pollination mechanism. Photo by: Flavio Agrosi

As I mentioned, it is hard to say whether this species still exists in the wild or not. The original mention of this plant in the literature dates back to 1914. A small population of W. crassa was found in northern Somalia and a few individuals were shipped overseas where they didn’t really make much of an impact on botanists or growers at that time. It would be another 21 years before this plant would receive any additional scientific attention. Attempts to relocate that original population failed but thanks to a handful of cultivated specimens that had finally flowered, W. crassa was given a proper description in 1935. After that time, W. crassa once again slipped back into the world of horticultural obscurity.

A few decades later, two additional trips were made to try and locate additional W. crassa populations. Botanical expeditions to Somalia in 1957 and again in 1986 did manage to locate a few populations of this succulent and it is likely that most of the plants growing in cultivation today are descended from collections made during those periods. However, trying to find any current information on the status of this plant ends there. Some say it has gone extinct, yet another species lost to over-collection and agriculture. Others claim that populations still exist but their whereabouts are kept as a closely guarded secret by locals. Though such claims are largely unsubstantiated, I certainly hope the latter is true and the former is not.

Photo by: Flavio Agrosi

Photo by: Flavio Agrosi

Our knowledge of W. crassa is thus restricted to what we can garner from cultivated specimens. It is interesting to think of how much about this species will remain a mystery simply because we have been unable to observe it in the wild. Despite these limitations, cultivation has nonetheless provided brief windows into it’s evolutionary history. Because of its rock-like appearance, it was assumed that W. crassa was related to the similar-looking members of the genus Pseudolithos. However, genetic analysis indicates that it is not all that closely related to this genus. Instead, W. crassa shares a much closer relationship to Huernia and Duvalia.

This is where the story ends unfortunately. Occasionally one can find cultivated individuals for sale and when you do, they are usually attached to a decent price tag. Those lucky enough to grow this species successfully seem to hold it in high esteem. If you are lucky enough to own one of these plants or to have at least laid eyes on one in person, cherish the experience. Also, consider sharing said experiences on the web. The more information we have on mysterious species like W. crassa, the better the future will be for species like this. With any luck, populations of this plant still exist in the wild, their locations known only to those who live nearby, and maybe one day a lucky scientist will finally get the chance to study its ecology a little bit better.

Photo Credits: [1] & Flavio Agrosi [2] [3] [4]

Further Reading: [1] [2]

Salty Succulents

Photo by Leoboudv licensed by CC BY 2.5

Photo by Leoboudv licensed by CC BY 2.5

Succulent plants come in a variety of shapes, sizes, and colors. They also hail from a variety of plant families. If there is one thing that unites these plants (other than their succulent habit) its that the vast majority of them around found growing in dry places. Whether its the heart of a desert or up in the canopy of a tree, succulence has evolved as a means of storing water. However, those of you living near salt marshes may recognize that a handful of salt marsh plants are succulent as well. How is it that plants so frequently found growing in standing water have evolved a succulent habit? The answer lies in salt.

Salt water is pretty bad for most plants. Just like we get dehydrated from drinking or eating high amount of salt, so too do plants. In general, salt both dehydrates plants and causes issues with nutrient uptake. Such is not the case for genera like Salicornia. Commonly referred to as glassworts, pickleweeds, or picklegrass, the various Salicornia are true salt-lovers.

Photo by OliBac licensed by CC BY 2.0

Photo by OliBac licensed by CC BY 2.0

Taxonomically speaking, the genus Salicornia has been called a “taxonomic nightmare.” Thanks to their highly reduced morphology and extreme phenotypic plasticity, delineating species among the genus is something best left to Salicornia experts. What we do know is that they all belong in the amaranth family, Amaranthaceae. All of this confusion should not take away from your enjoyment of Salicornia. Indeed, there is a lot worth appreciating in this family, including their ability to grow in conditions that would kill most other plants.

Salicornia are not simply salt tolerators that can hang on under saline conditions. They are true salt lovers or ‘halophytes.’ In fact, experiments have shown that various Salicornia grow much better when salt levels are high. This all has to do with the way in which these plants deal with their salty environment. Like all succulents, Salicornia have enlarged vacuoles that store water. However, these large vacuoles store more than good ol H2O. They also store salts and lots of them.

Photo by S.Ahmadihayeri licensed by CC BY-SA 3.0

Photo by S.Ahmadihayeri licensed by CC BY-SA 3.0

The secret to Salicornia’s salty success has to do with osmosis. As you may remember from science class, substances in our universe like to move from areas of high concentration to areas of low concentration. In the case of water within the tissues of an organism, this often occurs between biological membranes. As you add salt to water, it actually displaces water molecules such that the more salt you add, the less concentrated the water becomes. That is why salt water dehydrates us. When you surround a cell with salt, water will diffuse out of the cell to balance out the concentrations on both sides of the cell membrane. Salicornia use this to their advantage.

These plants actively take up salt from their environment and dump it into their vacuoles. This means that the concentration of water within the vacuole is less than the concentration of water outside of the cell. Osmosis then takes over and water rushes into the plant’s cells. By concentrating salt in their vacuoles, Salicornia are always ensuring that they are on the receiving end of the water gradient. Water is always moving into these salty plants and not the other way around. By co-opting morphological adaptation to drought, Salicornia are able to conquer a niche that is largely unavailable to most other plant species. It also means that, despite all of the water in their environment, these plants maintain a pleasingly succulent habit.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3] [4]

The Succulent Passionflowers

Photo by Wendy Cutler licensed by CC BY-SA 2.0

Photo by Wendy Cutler licensed by CC BY-SA 2.0

Succulent passionflowers?! It took me a minute to get my head wrapped around the idea. It wasn’t until I saw one in flower that I truly understood. The genus Adenia is found throughout east and west Africa, Southeast Asia, and hits its peak diversity in Madagascar. It comprises approximately 100 species and, as a whole, is poorly understood. Today I would like to introduce you to this bizarre genus within Passifloraceae.

Adenia glauca Photo by Karelj licensed under the GNU Free Documentation License

Adenia glauca Photo by Karelj licensed under the GNU Free Documentation License

Adenia is, to date, the second largest genus within the Passionflower family and yet delineating species has been something of a nightmare for botanists over the years. At least some of this confusion lies within the diversity of this odd group. It has been said that few angiosperm lineages surpass Adenia in the diversity of growth forms they exhibit. Though all could be considered succulent to some degree, Adenia runs the gamut from trees to vines, and even tuberous herbs.

3505817218_274303366e_o.jpg

Even within individual species, the overall form of these plants can vary widely depending on the conditions under which they have been growing. Their succulent nature and that fact that many species can reach rather large proportions means that herbarium records for this group are scant at best. Many are only known from a single, incomplete collection of a few bits and pieces of plant. Also, juvenile plants often look very different from their adult forms, making timing of the collection crucial for proper analysis.

To complicate matters more, all Adenia are dioecious, meaning that individual plants are either male or female. Male and female flowers of individual species look pretty distinct and differ a bit from what we have come to expect out of the passionflower family. Often collections were made on only a single sex. This is further complicated by the fact that these plants often exhibit very short flowering seasons. Most come into bloom right before the onset of the rainy season and are entirely leafless at that point in time. Because of this, it has been extremely difficult to accurately match flowering collections to vegetative collections. As such, nearly 1/4 of all Adenia species are missing descriptions of either male or female flowers and their fruits.

Female flower of Adenia reticulata. Photo by C. E. Timothy Paine licensed under CC BY-NC 2.0

Female flower of Adenia reticulata. Photo by C. E. Timothy Paine licensed under CC BY-NC 2.0

Male flowers of Adenia digitata. Photo by Joachim Beyenbach licensed under CC BY-SA 3.0

Male flowers of Adenia digitata. Photo by Joachim Beyenbach licensed under CC BY-SA 3.0

Flowers of Adenia firingalavensis.  Photo by voyage-madagascar.org licensed under CC BY 2.0

Flowers of Adenia firingalavensis. Photo by voyage-madagascar.org licensed under CC BY 2.0

Fruits of Adenia hondala

Fruits of Adenia hondala

Even genetic work has failed to clear up much of the mysteries that surround this group. Some studies suggest that Adenia is sister to all other genera within Passifloraceae whereas others have even suggested it to be nestled neatly within the genus Passiflora. The most recent work hints at a placement among the tribe Passifloreae. If this confuses you, you are certainly not alone. Until a more complete sampling effort is done on Adenia, I think it is safe to say that this genus will be holding onto its taxonomic mysteries for the foreseeable future.

Adenia globosa photo by KENPEI licensed under the GNU Free Documentation License

Adenia globosa photo by KENPEI licensed under the GNU Free Documentation License

All Adenia are perennial plants but how they manage this differs from species to species. Some put all of their energy into underground tubers, producing annual stems and leaves that die back each year. Others don’t produce any tubers and instead store all of their water and nutrients within thick stems. This has made at least a handful of species a hit with succulent growers around the world. It is always an interesting sight to see a giant caudiciform trunk or base with bunches of spindly stems spraying out from the top.

Leaves and fruit of Adenia cissampeloides. Photo by International Institute of Tropical Agriculture licensed under CC BY-NC 2.0

Leaves and fruit of Adenia cissampeloides. Photo by International Institute of Tropical Agriculture licensed under CC BY-NC 2.0

Juvenile Adenia glauca.  Photo by laurent houmeau licensed under CC BY-SA 2.0

Juvenile Adenia glauca. Photo by laurent houmeau licensed under CC BY-SA 2.0

Adenia are also extremely toxic plants. The conditions under which these plants evolved are tough and it appears that this group doesn’t want to take any chances on losing any biomass to herbivores. The main class of compounds they produce are called lectins. These proteins cause myriad issues within animal bodies including rapid cell death, blood clotting, inhibition of protein synthesis, and a disruption of ribosome and DNA function. Needless to say, its in any critters best interest to avoid nibbling on any species of Adenia. Even handling and pruning of these plants merits caution.

Photo by Wendy Cutler licensed under CC BY 2.0

Photo by Wendy Cutler licensed under CC BY 2.0

Whether you’re a botanist, taxonomist, gardener, or just curious about plant diversity, Adenia is a wonderful example of just how many unknowns are still out there. Regardless of their taxonomic status, these are fascinating species, each with a wonderful ecology and intriguing evolutionary history. These plants are hardy survivors and a great example of the lengths a genus can go to when presented with new opportunities. Undoubtedly many more species await description but the plants we currently know of are fascinating to say the least.

Adenia pechuelii. Photo by Ewald Schmidt licensed under public domain.

Adenia pechuelii. Photo by Ewald Schmidt licensed under public domain.

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

Further Reading: [1] [2]

The Grafted Cactus Origin Story

Photo by Dr. Hans-Günter Wagner licensed under CC BY-SA 2.0

Photo by Dr. Hans-Günter Wagner licensed under CC BY-SA 2.0

Many of you have undoubtedly met this interesting cactus before. Some  of you probably own one. Commonly referred to as 'Hibotan' or "moon  cactus," these are not a single species cactus but rather two different  cacti that have been grafted together.

The colorful top part is known scientifically as  Gymnocalycium mihanovichii. It is endemic to Paraguay and some provinces  of Argentina. In the wild it is not nearly this colorful. The specimens  sold in garden shops all over the world are actually mutant varieties that do not produce chlorophyll, thus revealing other pigments that are normally masked by green. The color of these mutants can range from  yellows to reds and even deep purples. Without chlorophyll, these mutants would normally die as seedlings.

The wild version of Gymnocalycium mihanovichii is a lot less coloreful. Photo by Petar43 licensed under CC BY-SA 4.0

The wild version of Gymnocalycium mihanovichii is a lot less coloreful. Photo by Petar43 licensed under CC BY-SA 4.0

Provided their host cactus is kept happy, mutant Gymnocalycium mihanovichii will flower. Photo by Mike Keeling licensed under CC BY-ND 2.0

Provided their host cactus is kept happy, mutant Gymnocalycium mihanovichii will flower. Photo by Mike Keeling licensed under CC BY-ND 2.0

At some point in time, someone got it in their head that they could graft these colorful mutants onto other species of cacti and perhaps they would survive. This is exactly what has happened. Interestingly enough, the bottom host cactus isn't even in the same genus as the moon cactus. Grafting is most often done on a species of Hylocereus (the same genus responsible for dragon fruit). How and why this host was chosen I do not know. Either way, armed with this knowledge, I hope you have gained a new found appreciation for these seemingly ubiquitous house plants.

Photo by Steve Rapport licensed under CC BY-NC-ND 2.0

Photo by Steve Rapport licensed under CC BY-NC-ND 2.0

Photo Credits: [1] [2] [3] [4]

Further Reading: [1]

Getting to Know Sansevieria

Photo by Mokkie licensed under CC BY-SA 3.0

Photo by Mokkie licensed under CC BY-SA 3.0

The houseplant hobby is experiencing something of a renaissance as of late. With their popularity on various social media platforms, easy to grow plant species and their cultivars are experiencing a level of popularity they haven't seen in decades. One genus of particular interest to houseplant hobbyists is Sansevieria.

Despite their popularity, the few Sansevieria species regularly found in cultivation come attached with less than appealing common names. Mother-in-law's tongue, Devil's tongue, and snake plant all carry with them an air of negativity for what are essentially some of the most forgiving houseplants on the market. What few houseplant growers realize is that those dense clumps of upright striped leaves tucked into a dark corner of their home belong to a fascinating genus worthy of our admiration. What follows is a brief introduction to these enigmatic houseplants.

Sansevieria cylindrica. Photo by Marlon Machado licensed under CC BY-NC 2.0

Sansevieria cylindrica. Photo by Marlon Machado licensed under CC BY-NC 2.0

Sansevieria ballyi. Photo by jurosig licensed under CC BY-NC-SA 2.0

Sansevieria ballyi. Photo by jurosig licensed under CC BY-NC-SA 2.0

The Sansevieria we encounter in most nurseries are just the tip of the iceberg. Sansevieria is a genus comprised of about 70 different species. I say 'about' because this group is a taxonomic mess. There are a couple reasons for this. For starters, the vast majority of Sansevieria species are painfully slow growers. It can take decades for an individual to reach maturity. As such, they have never really presented nursery owners with much in the way of economic gain and thus only a few have received any commercial attention.

Another reason has to do with the fiber market during and after World War II. In hopes of discovering new plant-based fibers for rope and netting, the USDA collected many Sansevieria but never formally described most of them. Instead, plants were assigned numbers in hopes that future botanists would take the time needed to parse them out properly.

A third reason has to do with the variety of forms and colors these plants can take. Horticulturists have been fond of giving plants their own special cultivar names. This complicates matters as it is hard to say which names apply to which species. Often the same species can have different names depending on who popularized it and when.

Sansevieria grandis in situ. Photo by Ton Rulkens licensed under CC BY-SA 2.0

Sansevieria grandis in situ. Photo by Ton Rulkens licensed under CC BY-SA 2.0

Regardless of what we call them, all Sansevieria hail from arid regions of Africa, Madagascar and southern Asia. In the wild, many species resemble agave or yucca and, indeed, they occupy similar niches to these New World groups. Like so many other plants of arid regions, Sansevieria evolved CAM photosynthesis as a means of coping with heat and drought. Instead of opening up their stomata during the day when high temperatures would cause them to lose precious water, they open them at night and store CO2 in the form of an organic acid. When the sun rises the next day, the plants close up their stomata and utilize the acid-stored carbon for their photosynthetic needs.

The wonderfully compact Sansevieria pinguicula. Photo by Peter A. Mansfeld licensed under CC BY 3.0

The wonderfully compact Sansevieria pinguicula. Photo by Peter A. Mansfeld licensed under CC BY 3.0

Often you will encounter clumps of Sansevieria growing under the dappled shade of a larger tree or shrub. Some even make it into forest habitats. Most if not all species are long lived plants, living multiple decades under the right conditions. These are just some of the reasons that they make such hardy houseplants.

The various Sansevieria appear to sort themselves out along a handful of different growth forms. The most familiar to your average houseplant enthusiast is the form typified by Sansevieria trifasciata. These plants produce long, narrow, sword shaped leaves that point directly towards the sky. Many other Sansevieria species, such as S. subspicata and S. ballyi, take on a more rosetted form with leaves that span the gamut from thin to extremely succulent. Still others, like S. grandis and S. forskaalii, produce much larger, flattened leaves that grow in a form reminiscent of a leaky vase. 

Sansevieria trifasciata with berries. Photo by Mokkie licensed under CC BY-SA 3.0

Sansevieria trifasciata with berries. Photo by Mokkie licensed under CC BY-SA 3.0

Regardless of their growth form, a majority of Sansevieria species undergo radical transformations as they age. Because of this, adults and juveniles can look markedly different from one another, a fact that I suspect lends to some of the taxonomic confusion mentioned earlier. A species that illustrates this nicely is S. fischeri. When young, S. fischeri consists of tight rosettes of thick, mottled leaves. For years these plants continue to grow like this, reaching surprisingly large sizes. Then the plants hit maturity. At that point, the plant switches from its rosette form to producing single leaves that protrude straight out of the ground and can reach heights of several feet! Because the rosettes eventually rot away, there is often no sign of the plants previous form.

A mature Sansevieria fischeri with its large, upright, cylindrical leaves. Photo by Peter A. Mansfeld licensed under CC BY 3.0

A mature Sansevieria fischeri with its large, upright, cylindrical leaves. Photo by Peter A. Mansfeld licensed under CC BY 3.0

If patient, many of the Sansevieria will reach enormous sizes. Such sizes are rarely observed as slow growth rates and poor housing conditions hamper their performance. It's probably okay too, considering the fact that, when fully grown, such specimens would be extremely difficult to manage in a home. If you are lucky, however, your plants may flower. And flower they do!

Though there is variation among the various species, Sansevieria all form flowers on either a simple or branched raceme. Flowers range in color from greenish white to nearly brown and all produce a copious amount of nectar. I have even noticed sickeningly sweet odors emanating from the flowers of some captive specimens. After pollination, flowers give way to brightly colored berries, hinting at their place in the family Asparagaceae.

A flowering Sansevieria hallii. Photo by Ton Rulkens licensed under CC BY-SA 2.0

A flowering Sansevieria hallii. Photo by Ton Rulkens licensed under CC BY-SA 2.0

As a whole, Sansevieria can be seen as exceptional tolerators, eking out an existence wherever the right microclimate presents itself in an otherwise harsh landscape. Their extreme water efficiency, tolerance of shade, and long lived habit has lent to the global popularity of only a few species. For the majority of the 70 or so species in this genus, their painfully slow growth rates means that they have never made quite a splash in the horticulture trade.

Nonetheless, Sansevieria is one genus that even the non-botanically minded among us can pick out of a lineup. Their popularity as houseplants may wax and wane but plants like S. trifasciata are here to stay. My hope is that all of these folks collecting houseplants right now will want to learn more about the plants they bring into their homes. They are more than just fancy decorations, they are living things, each with their own story to tell. 

NOTE: Since writing this article, I have learned that the genus Sansevieria has been lumped into the genus Dracaena. For the sake of familiarity, I retain the generic name Sansevieria for this article.

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3]

The Mystery of the Ghost Plant

Photo by Felipe Fenrisvarg licensed under CC BY-NC-SA 2.0

Photo by Felipe Fenrisvarg licensed under CC BY-NC-SA 2.0

As houseplants enjoy a resurgence in our culture, untold numbers of novice and expert growers alike will have undoubtedly tried their luck at a succulent or two. Succulent, of course, is not a taxonomic division, but rather a way of describing the anatomy of myriad plants adapted to harsh, dry environments around the world. One of the most common succulents in the trade is the ghost plant (Graptopetalum paraguayense).

I would bet that, if you are reading this and you grow houseplants, you have probably grown a ghost plant at one point or another. They are easy to grow and will propagate a whole new plant from only a single leaf. Despite its worldwide popularity, the ghost plant is shrouded in mystery and confusion. To date, we know next to nothing about its ecology. Much of this stems from poor record keeping and the fact that we have no idea exactly where this species originated.

That's right, we do not know the location of its native habitat. Records indicate that the first plants to find their way into human hands were imported into New York in 1904. Apparently, they were growing as "weeds" at the base of some South American cacti. Plants were lucky enough to wind up in the hands of competent botanists and the species has ended up with the name Graptopetalum paraguayense. The specific epithet "paraguayense" was an indication of much confusion to come as it was thought that the ghost plant originated in Paraguay.

Time has barely improved our knowledge. Considering many of its relatives hail from Mexico, it gradually became more apparent that South America could not claim this species as its own. Luck changed only relatively recently with the discovery of a population of a unique color variant of the ghost plant on a single mountain in northeastern Mexico. A thorough search of the area did not reveal any plants that resemble the plant so many of us know and love. It has been suggested that the original population from which the type species was described is probably growing atop an isolated mountain peak somewhere nearby in the Chihuahuan Desert.

Despite all of the mystery surrounding this species, we can nonetheless elucidate some aspects about its biology by observing plants in cultivation. It goes without saying that the ghost plant is a species of dry, nutrient-poor habitats. Its succulence and tolerance of a wide array of soil conditions is a testament to its hardy disposition. Also, if plants are grown in full sun, they develop a bluish, waxy coating on their leaves. This is likely a form of sunscreen that the plant produces to protect it from sun scorch. As such, one can assume that its native habitat is quite sunny, though its ability to tolerate shade suggests it likely shares its habitat with shrubby vegetation as well. Given enough time and proper care, ghost plants will produce sprays of erect, 5 pointed flowers. It is not known who might pollinate them in the wild.

It is always interesting to me that a plant can be so well known to growers while at the same time being a complete mystery in every other way. A search of the literature shows that most of the scientific attention given to the ghost plant centers on potentially useful compounds that can be extracted from its tissues. Such is the case for far too many plant species, both known and unknown alike. Perhaps, in the not too distant future, some intrepid botanist will at last scramble up the right mountain and rediscover the original habitat of this wonderful plant. Until then, I hope this small introduction provides you with a new found appreciation for this wonderfully adaptable houseplant.

Photo Credits: [1]

Further Reading: [1] [2] [3]

 

A Surprising Realization About Leaf Windows

lithos.JPG

I will never forget the first time I laid eyes on a Lithops. These odd little succulents are truly marvels of evolution. The so-called "living stones" really do earn their name as most are exquisitely camouflaged to match the gravelly soils in which they grow. If bizarre color patterns weren't enough, Lithops, as well as many other succulents, live their lives almost completely buried under the soil. All one ever really sees is the very tip of their succulent leaves and the occasional flower.

Marloth-Lithops-drawing.jpg

It is the tips of those leaves that make people swoon. Lithops belong to a hodgepodge mix of succulent genera and families that produce windowed leaves. Aside from their striking patterns, the tips of their leaves are made up of layers of translucent cells, which allow light to penetrate into the interior of the leaf where the actual photosynthetic machinery is housed. Their semi-translucent leaves, coupled with their nearly subterranean habit, have led to the assumption that the leaf windows allow the plants to continue photosynthesis all the while being mostly buried. Despite the popularity of this assumption, few tests had been performed to see whether or not the windows function as we think. All of that changed back in the year 2000.

As hinted at above, a variety of succulent plants have converged on a similar leaf morphology. This is where things get a bit strange. Not all plants that exhibit the leaf window trait find themselves buried in the soil. Others, such as Peperomia graveolens for example, produce the photosynthetic tissues on tall stems. Examples like this led at least some researchers to second guess the common assumption of windows increasing photosynthesis and the resulting investigations were surprising to say the least. 

Peperomia graveolens. © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

Peperomia graveolens. © Raimond Spekking / CC BY-SA 4.0 (via Wikimedia Commons)

A duo of researchers decided to test the assumption that leaf windows increase photosynthesis by channeling light directly to the photosynthetic machinery inside. The researchers used tape to cover the leaf windows of a variety of succulent plant species. When they compared photosynthetic rates between the two groups, not a single difference was detected. Plants who had their leaves covered photosynthesized the same amount as plants with uncovered leaves. These data were quite shocking. Because they tested this assumption across a variety of plant species, the results suggested that the function of windowed leaves isn't as straight forward as we thought. These findings raised more questions than they solved.

Subsequent experiments only served to reinforce the original findings. What's more, some even showed that plants with covered windows actually photosynthesized more than plants with uncovered windows. It seems that windowed leaves function in a completely opposite manner than the popular assumption. The key to this patterns may lie in heat exchange. When the researchers took the temperature of the interior of the leaves in each group, they found that internal leaf temperatures were significantly higher in the uncovered group and this has important implications for photosynthesis for these species.

High leaf temperatures can be extremely damaging to photosynthetic proteins. If too much light filters through, leaf temperatures can actually hit damaging levels. This is one reason that many of these plant species have adopted this bizarre semi-subterranean habit. Plants that experienced such high temperatures throughout the course of a day had permanent damage done to their photosystems. This led to a reduction of fitness over time. Such lethal temperature spikes did not happen to leaves that had been covered.

Haworthia truncata. Photo by www.haworthia-gasteria.com

Haworthia truncata. Photo by www.haworthia-gasteria.com

If you're anything like me, at this point you must be questioning the role of the leaf windows entirely. Why would they be there if they may actually hurt the plants in the long run? Well, this is where knowing something about the habitat of each species comes into play. Not all leaf windows are created equal. The patterns of their windows vary quite a bit depending on where the plants evolved. In 2012, a paper was published that looked at the patterns of Lithops leaf windows in relation to their place of origin. Not all Lithops grow in the same conditions and various species hail from regions with vastly different climates.

What the paper was able to demonstrate was that Lithops native to regions that experience more average annual rainfall have much larger window areas on their leaves than Lithops native to drier regions. Again, the underpinnings of this discovery nonetheless have to do with light availability. Wetter areas experience more cloud cover than drier areas so Lithops growing where its cloudy have to cope with a lot less sun than their more xeric-growing cousins. As such, having a larger window allows more diffuse light into the leaf for photosynthesis without having to worry about the damaging temperatures.

Photo by Petra licensed under CC BY-NC 2.0

Photo by Petra licensed under CC BY-NC 2.0

The reverse is true for Lithops from drier climates. They have smaller leaf windows because they experience more days with direct sun. Smaller windows means less sunlight entering the leaf. This serves to keep internal leaf temperatures within a much safer range, thus protecting the delicate proteins inside. As it turns out, leaf windows seem to represent a trade-off between photosynthesis and overheating. What's more, some window-leaved species seem to be evolving away from the light transmitting function of their cousins living in shadier conditions. If anything, this serves as a reminder that simply because something seems obvious, that doesn't mean its always true. Stay curious, my friends!

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4] [5] [6]