Should We Be Calling Aquatic Bladderworts Omnivores Instead of Carnivores?

Photo by Leonhard Lenz licensed under CC BY-NC 2.0

Photo by Leonhard Lenz licensed under CC BY-NC 2.0

As is so often the case in nature, the closer we start to look at things, the more interesting they become. Take, for instance, the diet of some carnivorous bladderworts (Utricularia spp.). These wonderful organisms cover their photosynthetic tissues in tiny bladder traps that rapidly spring open whenever a hapless invertebrate makes the mistake of coming too close to a trigger hair. The unlucky prey is quickly sucked into the trap and subsequently digested.

This is how most bladderworts supplement their growth. As cool as this mechanism truly is, our obsession with the idea that these plants are strict carnivores has historically biased the kinds of investigations scientists attempt with these plants. Over the last decade or so, closer inspection of the contents of aquatic bladderwort traps has revealed that a surprising amount of plant material gets trapped as well. Most of this material consists of single celled algae. Is it possible that at least some aquatic bladderworts also gain nutrients from all of that “vegetable” matter?

The answer to this question is a bit more nuanced than expected. Yes, it does appear that non-animal material frequently ends up in bladderwort traps. Much of this comes in the form of a wide variety of algae species. What’s more, it does appear that algae are broken down within the traps themselves, suggesting that the bladderworts are actively digesting this material. The main question that needs to be answered here is whether or not the bladderworts actually benefit from the breakdown of algae.

Evidence of a nutritive benefit from algae digestion is mixed. Some studies have found that the bladderworts don’t appear to benefit at all from the breakdown of algae within their traps. Alternatively, others have found that bladderworts may benefit from digesting at least some types of algae. These authors noted that there doesn’t seem to be any benefit in terms of additional nitrogen for the bladderwort but instead suggest that other trace nutrients might be obtained in this way.

Uk_pond_bladderwort2.jpg
11258_2008_9420_Fig1_HTML.jpg

One of the biggest hurdles in this line of research arises from the fact that we still don’t fully understand the digestive mechanisms of bladderworts. It is possible that some of the algal degradation within bladderwort traps has nothing to do with digestion at all. Instead, it could simply be that algae stuck in the traps eventually dies and rots away. Another major question raised by these observations is how tiny organisms like single celled algae even make it into the traps in the first place. What we can say for sure is most algae are far too small to actually trigger the bladder traps. As such, algae is either getting into the traps passively via some form of diffusion or they are sucked in when other, larger prey is captured.

Some research has even suggested that the benefit of trapping algae may depend on the habitats in which bladderworts are growing. Bladderworts living in more acidic water have shown to capture far more algae than bladderworts in more neutral or alkaline water. This has to do with acidity. Numerically speaking, there is far less zooplankton living in acidic water than algae, which means algae is more likely to end up in the bladders. It could be that the benefits of algae are thus greater for plants living in places where little zooplankton is available. Certainly more work will be needed before we can call bladderworts omnivores but the idea itself is exciting.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]



Of Bladderworts & Birds

Photo by Jean and Fred licensed by CC BY 2.0

Photo by Jean and Fred licensed by CC BY 2.0

Bladderworts are as beautiful as they are deadly. Though they are known the world over for their carnivorous bladder traps, their flowers are something to marvel at as well. Bladderworts flower in a range of colors from yellows to whites, purples to reds. What’s more, the variety of shapes and sizes among bladderwort flowers are incredible. Though the vast majority of bladderwort species rely on insects for pollination, at least one species appears to have co-opted a bird for its reproductive needs.

Red coats (Utricularia menziesii) are endemic to a few coastal regions of western Australia. They are not floating aquatic plants like many of their North American cousins, nor do they grow epiphytically like many tropical bladderworts. Red coats are terrestrial in their habit. Moreover, they live in habitats that dry up for good portions of the year. As the soils dry out, red coats die back into tiny corms in which they store energy during their dry dormancy that will fuel growth as soon as rains return and the surrounding soils are once again saturated.

Photo by Jean and Fred licensed by CC BY 2.0

Photo by Jean and Fred licensed by CC BY 2.0

When conditions are right, red coats produce some of the most spectacular flowers of the entire genus. Though other species also produce red flowers, few produce such outlandishly bright blossoms. Moreover, the flowers themselves are rather robust structures complete with a long, tough nectar spur. Their color, form, and proximity to the ground has led more than one author to suggest that birds, not insects, are the main pollinators of this species.

Indeed, it appears that birds are what these flowers are attracting. Not just any bird will do either. It seems that the western spinebill (Acanthorhynchus superciliosus) is wonderfully primed to pollinate this lovely little carnivore. Red is a major attractant for birds and the fact that red coat flowers are presented so close to ground level places at the perfect height for ground-foraging spinebills. Also, the length, curvature, and nectar content of the nectar spur fits the spinebill beak nicely. Birds approach the plants on the ground and dip their long, curved beaks into the flower, picking up and depositing pollen as they go.

The western spinebill (Acanthorhynchus superciliosus). Note the curved beak. Photo by Jean and Fred licensed by CC BY 2.0

The western spinebill (Acanthorhynchus superciliosus). Note the curved beak. Photo by Jean and Fred licensed by CC BY 2.0

This isn’t the only bladderwort to be suspected of bird pollination. At least two others (Utricularia quelchii & Utricularia campbelliana) have been hypothesized to utilize hummingbirds for pollination. However, there is scant evidence for this. Pollination studies can be tricky like that. Without proper observation and study, one simply can’t confirm a particular pollination syndrome.

Photo Credits: [1] [2] [3]

Further Reading: [1]

The Floating Bladderwort

52097268_398722010700527_5242123724978651136_o.jpg

A carnivorous plant species that uses its radially arranged stolons like tiny pontoons to float at the waters surface may sound like something out of a science fiction novel. However, it is a very real strategy  adopted by one of the coolest carnivorous plants in North America. Utricularia inflata is one of the largest species of floating bladderwort on this continent and it is a species worth knowing.

Sometimes referred to as the swollen bladderwort, this species enjoys a native range that extends through much of the southeastern United States. For most of the year it exists in a state quite similar to other aquatic bladderworts. It has no true roots or leaves. Instead it produces a long, filiform stolon covered in tiny filaments that act as leaves with bladder traps situated at their tips. It sits in the water  column, gobbling up anything small and unfortunate enough to stumble into it.

Photo by Daiju Azuma licensed under CC BY-SA 2.5

Photo by Daiju Azuma licensed under CC BY-SA 2.5

When flowering time approaches, these aquatic carnivores begin producing a different kind of stolon. Arranged like spokes on a wheel, the plant puts out swollen, air-filled stolons that float at the waters surface. These structures support the inflorescence. Flowers are bright yellow and resemble those of many other bladderwort species. Entire bodies of water can literally erupt in a sea of yellow bladderwort flowers when the right conditions present themselves.

Photo by Adam Arendell licensed under CC BY-NC 2.0

As mentioned, this species is carnivorous. It uses tiny bladder traps to suck in unsuspecting prey. Their diet is varied and includes pretty much anything that can fit into its bladder traps. One research paper reports both animal (rotifers, cladocerans, copepods, annelids, rhizopodeans, as well as small insects) and "plant" (Bacillariophyta, Chlorophyta, Cyanophyta, and Euglenophyta) prey.

Unfortunately these plants have been introduced far outside of their native range. In many areas they are becoming prevalent enough to be considered invasive. For instance, research done in the Adirondack Mountains of New York found that the presence of introduced populations of U. inflata caused significant changes in nutrient cycling, sediment chemistry, and overall net primary productivity.

This is a very neat species well worth a closer look. That being said, if you are a hobbyist such as myself, it is very important to remember that we should never release a species (no matter how cool it is) into areas where it isn't native.

Photo Credit: Dr. Mark Whitten, [3] [4]

Further Reading: [1] [2]

A New Look at a Common Bladderwort

Photo by Kevin Thiele licensed under CC BY 2.0

Photo by Kevin Thiele licensed under CC BY 2.0

It is so often that common species are overshadowed by something more exotic. Indeed, we know more about some of the rarest plants on earth than we do about species growing in our own back yards. Every once in a while researchers break this pattern and sometimes this yields some amazing results. Nowhere has this been better illustrated in recent years than on the humped bladderwort, Utricularia gibba. 

This wonderful little carnivore can be found growing in shallow waters all over the world. Like all Utricularia, it uses tiny little bladders to capture its even tinier prey. Despite its diminutive size, U. gibba is nonetheless a very derived species. For all of its wonderful physical attributes, the real adventure begins at the microscopic level. As it turns out, U. gibba has some amazing genetic attributes that are shining light on some incredible evolutionary mechanisms. 

When researchers from the University at Buffalo, Universitat de Barcelona in Spain, and LANGEBIO in Mexico decided to sequence the genome of this plant, what they found was quite startling. For a rather complex little plant, the genome of U. gibba is incredibly small. What the researchers found is that U. gibba appears to be very efficient with its DNA. Let's back up for a moment and consider this fact. 

The genomes of most multicellular organisms contain both coding and non-coding DNA. For decades researchers have gone back and forth on how important non-coding DNA is. They do not code for any protein sequences but they may play a role in things like transcription and translation. For a long time this non-coding DNA has been referred to as junk DNA. 

This is where things get interesting. Sequencing of the U. gibba genome revealed that only 3% of its genome consisted of non-coding or junk DNA. For some reason the U. gibba lineage has managed to delete most of it. To put things in perspective, the human genome is comprised of roughly 98% non-coding or junk DNA. Despite its rather small and efficient genome, U. gibba nonetheless has more genes than plants with larger genomes. This may seem confusing but think of it this way, whereas U. gibba has a smaller overall genetic code, it is comprised of more genes that code for things like digestive enzymes (needed for digesting prey) and cell walls (needed to keep water out) than plants with more overall genetic code such as grapes or Arabidopsis. 

As one author put it, this tiny ubiquitous plant has revealed "a jewel box full of evolutionary treasures." It is a species many of us have encountered time and again at the local fishing hole or in your favorite swimming pond. Time and again we pass by the obvious. We overlook those organisms that are most familiar to us. We do so at the cost of so much knowledge. It would seem that the proverbial "Old Dog" has plenty of tricks to teach us. 

Photo Credit: Kevin Thiele (http://bit.ly/1Flouqd) and Reinaldo Aguilar (http://bit.ly/1B6mnHN)

Further Reading:

http://www.nature.com/nature/journal/v498/n7452/full/nature12132.html

http://mbe.oxfordjournals.org/content/early/2015/01/31/molbev.msv020

http://plants.usda.gov/core/profile?symbol=UTGI