Goblin's Gold: the story of a luminous moss

Photo by Alpsdake licensed under CC BY-SA 4.0

Photo by Alpsdake licensed under CC BY-SA 4.0

Luminous moss, dragon’s gold, goblin’s gold… when a moss has this many common names, you know it must catch the eye. Indeed, Schistostega pennata might just be one of the most dazzling of mosses around, that is provided you know where and how to look for it.

Let’s begin with a brief introduction. Goblin’s gold is the only member of both its genus (Schistostega) and family (Schistostegaceae). Despite its unique taxonomic position, it is nonetheless a widespread species, growing naturally throughout many temperate regions of the Northern Hemisphere.

When fully grown, the gametophyte stage of goblin’s gold sort-of resembles a tiny, green, semi-translucent feather. Small spore capsules are borne on the spindly stalk of the sporophyte and the resulting spores are said to be quite sticky. Instead of relying on wind to disperse its propagules, golbin’s gold utilizes animals. The spores are sticky enough that they get glom onto any insects or other small animals that brush up against them.

The mature gametophyte of Schistostega pennata. Photo by HermannSchachner licensed under Public Domain

The mature gametophyte of Schistostega pennata. Photo by HermannSchachner licensed under Public Domain

None of this, however, gives a hint as to how it earned all of those colorful names. To find that out, one must be ready to brave dark, damp spaces like caves. You see, though it can grow in more open habitats, you are most likely to encounter goblin’s gold in dark crevices or under overhangs. It has been said that goblin’s gold does not compete well with other plants in most habitats, but that doesn’t mean it doesn’t have a few tricks up its stems that give it an edge in other types of habitats.

For most plants, caves and other dark places are a no go. They simply can’t get enough light to survive. Such is not the case for goblin’s gold. Instead of trying to compete with more aggressive vegetation, goblin’s gold occupies deeply shaded habitats that few other plants can. It owes its shade-tolerant abilities to a stage of its development most of us rarely think about, let alone notice.

Photo by Jymm licensed under CC BY-SA 4.0

Photo by Jymm licensed under CC BY-SA 4.0

When a moss spore germinates, it doesn’t immediately look like what we would recognize as a moss. Instead, it grows into thread-like, multicellular fillaments called a “protonema.” You can think of this as the juvenile stage of the gametophyte. The protonema spreads outward as it grows, gradually producing hormones and other growth regulators that will control the development of the mature gametophyte. Because goblin’s gold grows in such dark habitats, it can’t afford to grow its gametophyte anywhere. To grow long enough to reproduce, it has to find spots where there is enough light to complete its lifecycle.

This is where the protonema comes in. In much the same why that fungal hyphae fan out into the soil in search of food to decompose, goblin’s gold protonema fan out over the damp substrate, searching for spots where enough light filters through to fuel growth. Luckily, the protonema can make do with much less light that the mature gametophyte, which also happens to be how this tiny moss earned so many interesting nicknames.

When grown in deep shade, the protonema of goblin’s gold develops a layer of lens-shaped cells on its surface. The opposite side of each cell narrows to a cone. When light, no matter how weak, strikes these lens cells, the curvature focuses the light down into the cell so that it is concentrated into the tip at the bottom. Being able to sense the direction of the light, the chloroplasts within each cell can actually move around so that they are always in a position that maximizes their exposure. Through this process, each cell is able to concentrate what little light is available so that they can photosynthesize in light so low that nearly all other plants will starve.

The light concentrating mechanism of the goblin’s gold protonema happens to have a wonderful and stunning side effect. As light enters the lens, small amounts of it are refracted around the cell. When that refracted light mixes with the green light that isn’t absorbed by the chloroplasts, it bounces back into the environment, giving the whole protonemal mat a green florescent glow when viewed in just the right way.

By being able to make use of what little light finds its way into these dark habitats, goblin’s gold can grow largely free of competition. Also, the protonema itself is capable of asexual reproduction so colonies can grow to epic proportions in dark areas, only producing mature gametophytes in a few spots. Interestingly, there appears to be some plasticity to this light-concentrating habit as well. When observing goblin’s gold protonema that develop under high light conditions, researchers have found that they do not develop lens shaped cells and therefore are not capable of reflecting light in the same way.

Humans have known about this moss for centuries, even if they didn’t understand the mechanisms that cause it, and that is why this wonderfully unique species has earned so many common names.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

Glacier Mice

At first glance the surface of a glacier hardly seems hospitable. Cold, barren, and windswept, glaciers appear to be the antithesis of life. However, this assumption is completely completely false. Glaciers are home to an interesting ecosystem of their own, albeit on a smaller scale than we normally give attention to.

From pockets of water on the surface to literal lakes of water sealed away inside, glaciers are home to a myriad microbial life. On some glaciers the life even gets a bit larger. Glaciers are littered with debris. As dust and gravel accumulate on the surface of the ice, they begin to warm ever so slightly more than the frozen water around them. Because of this, they are readily colonized by mosses such as those in the genus Racomitrium.

The biggest challenge to moss colonizers is the fact that glaciers are constantly moving, which anymore today means shrinking. As such, these bits of debris, along with the mosses growing on them, do not sit still as they would in say a forest setting. Instead they roll around. As the moss grows it spreads across the surface of the rock while the ice rotates it around. This causes the moss to grow on top of itself, inevitably forming a ball-like structure affectionately referred to as a "glacier mouse."

300_2012_1205_Fig4_HTML.jpg

Because the moss stays ever so slightly warmer than its immediate surroundings, glacier mice soon find themselves teaming with life. Everything from worms to springtails and even a few water bears call glacier mice home. In a study recently published in Polar Biology, researcher Dr. Steve Coulson found "73 springtails, 200 tardigrades and 1,000 nematodes" thriving in just a single mouse!

The presence of such a diverse community living in these little moss balls brings up an important question - how do these animals find themselves in the glacier mice in the first place? After all, life just outside of the mouse is very brutal. As it turns out, the answer to this can be chalked up to how the mice form in the first place. As they blow and roll around the the surface of the glacier, they will often bump into one another and even collect in nooks and crannies together. It is believed that as this happens, the organisms living within migrate from mouse to mouse. The picture being painted here is that far from being a sterile environment, glaciers are proving to be yet another habitat where life prospers. Sadly, as climate change causes glaciers retreat at an ever increasing rate, glacier mice and all of the life they support will lose the very conditions they rely on for survival.

Photo Credit: [1] [2]

Further Reading: [1]

Zoophagous Liverworts?

Photo by Matt von Konrat Ph.D - Biblioteca Digital Mundial (eol.org) licensed under CC BY 3.0

Photo by Matt von Konrat Ph.D - Biblioteca Digital Mundial (eol.org) licensed under CC BY 3.0

Mention the word "liverwort" to most folks and you are going to get some funny looks. However, mention it to the right person and you will inevitably be drawn into a world of deep appreciation for this overlooked branch of the plant kingdom. The world of liverworts is best appreciated with a hand lens or microscope.

A complete lack of vascular tissue means this ancient lineage is often consigned to humid nooks and crannies. Look closely, however, and you are in for lots of surprises. For instance, did you know that there are liverworts that may be utilizing animal traps?

Right out of the gates I need to say that the most current research does not have this labelled as carnivorous behavior. Nonetheless, the presence of such derived morphological features in liverworts is quite sensational. These "traps" have been identified in at least two species of liverwort, Colura zoophaga, which is native to the highlands of Africa, and Pleurozia purpurea, which has a much wider distribution throughout the peatlands of the world.

A liverwort “trap” showing the lid (L), water sac (wl). {SOURCE]

A liverwort “trap” showing the lid (L), water sac (wl). {SOURCE]

The traps are incredibly small and likely derived from water storage organs. What is different about these traps is that they have a moveable lid that only opens inward. In the wild it is not uncommon to find these traps full of protozoans as well as other small microfauna. Researchers aimed to find out whether or not this is due to chance or if there is some active capture going on.

Using feeding experiments it was found that some protozoans are actually attracted to these plants. What's more these traps do indeed function in a similar way to the bladders of the known carnivorous genus Utricularia. Despite these observations, no digestive enzymes have been detected to date. For now researchers are suggesting that this is a form of "zoophagy" in which animals lured inside the traps die and are broken down by bacterial communities. In this way, these liverworts may be indirectly benefiting from the work of the bacteria.

This is not unheard of in the plant world. In fact, there are many species of pitcher plants that utilize similar methods of obtaining valuable nutrients. Certainly the lack of nutrients in the preferred habitats of these liverworts mean any supplement would be beneficial.

Photo Credits: Matt von Konrat Ph.D - Biblioteca Digital Mundial (eol.org), HESS ET AL. 2005 (http://www.bioone.org/doi/abs/10.1639/6), and Sebastian Hess (http://virtuelle.gefil.de/s-hess/forsch.html)

Further Reading: [1]