Is has long been known that food fed to larval honeybees influences their development and therefore their place in the hive. Larvae fed a mixture of pollen and honey, often referred to as "bee bread," develop into sterile workers whereas larvae fed special secretions termed "royal jelly" from nurses within the colony will develop into queens. Despite this knowledge, the mechanisms underpinning such drastic developmental differences have remained a mystery... until now.
A team of researchers from Nanjing University in China have uncovered the secret to honeybee caste systems and it all comes down to the plants themselves. It all has to do with tiny molecules within plants called microRNA. In eukaryotic organsisms, microRNA plays a fundamental role in the regulation of gene expression. In plants, they have considerable effects on flower size and color. In doing so, they can make floral displays more attractive to busy honeybees.
As bees collect pollen and nectar, they pick up large quantities of these microRNA molecules. Back in the hive, these products are not distributed equally, which influences the amount of microRNA molecules that are fed to developing larvae. The team found that microRNA molecules are much more concentrated in bee bread than they are in royal jelly. Its this difference in concentrations that appears to be at the root of the caste system.
Larvae that were fed bee bread full of microRNA molecules developed smaller bodies and reduced, sterile ovaries. In other words, they developed into the worker class. Alternatively, larvae fed royal jelly, which has much lower concentrations of microRNA, developed along a more "normal" pathway, complete with functioning ovaries and a fuller body size; they developed into queens.
All of this hints at a deep co-evolutionary relationship. The fact that these microRNA molecules not only make plants more attractive to pollinators but also influence the caste system of these insects is quite remarkable. Additionally, this opens up new doors into understanding co-evolutionary dynamics. If horizontal transfer of regulatory molecules between two vastly different kingdoms of life can manifest in such important ecological relationships, there is no telling what more is awaiting discovery.
Further Reading: [1]