What you are looking at are plants that were grown from seeds buried in permafrost for nearly 32,000 years. The seeds were discovered on the banks of the Kolyma River in Siberia. The river is constantly eroding into the permafrost and uncovering frozen Pleistocene relics. Upon their discovery, researchers took the seeds and did the unthinkable - they grew them into adult plants. To date, this is the oldest resurrected plant material.
The key to their extreme longevity lies in the permafrost. They were found inside the frozen burrow of an Arctic ground squirrel. The state of the burrow suggests that everything froze quite rapidly. As such, the seeds remained in a state of suspended animation for 32,000 years. This is not the first time viable plant materials have been recovered from Pleistocene permafrost. Spores, mosses, as well as seeds of other flowering plants have been rejuvenated to some degree in the past but none of these were grown to maturity.
Using micropropagation techniques coupled with tissue cultures, researchers were able to grow and flower the 32,000 year old seeds. What they discovered was that these seeds belonged to a plant that can still be found in the Arctic today. It is a small species in the family Caryophyllaceae called Silene stenophylla. However, there were some interesting differences.
As it turns out, the seeds taken from the burrow proved to be a phenotype quite distinct from extant S. stenophylla populations. For instance, their flowers were thinner and less dissected than extant populations. Also, whereas the flowers of extant populations are all bisexual, individuals grown from the ancient seeds first produced only female flowers followed by fewer bisexual flowers towards the end of their blooming period.Though there are many possible reasons for this, it certainly hints at the different environmental parameters faced by this species through time. What's more, such findings allow us a unique window into the world of seed dormancy. Researchers are now looking at such cases to better inform how we can preserve seeds for longer periods of time.
Photo Credit: Svetlana Yashinaa, Stanislav Gubin, Stanislav Maksimovich, Alexandra Yashina, Edith Gakhova, and David Gilichinsky
Further Reading: [1]