Pretty Pantaloons From a Member of the Poppy Family

92571188_2334513486652195_418529895681884160_n.jpg

With delicately dissected foliage and flowers that look like pantaloons, it is hard to believe that Dutchman's breeches (Dicentra cucullaria) are related to the common garden poppy. No matter how incredulous it may seem, they are in fact peculiar members of Papaveraceae. I can't get enough of these lovely spring ephemerals and their beauty is equally matched by their intriguing ecology. This species really is the full package.


At home in mesic deciduous forests, Dutchman's breeches are true spring ephemerals. They are primarily denizens of eastern North America, however, disjunct populations can be found in the Pacific Northwest. These are likely relics of a once wider distribution that was split in two by advancing glaciers during the Pleistocene. Dutchman’s breeches live out their entire lives before the tree canopy closes with a fresh batch of leaves. By mid summer they are little more than dormant bulblets resting below the leaf litter. Like the multitude of spring ephemerals they share the forest with, Dutchman's breeches are vying for pollinators capable of tolerating wide swings in temperature. This is where their peculiar little flowers come in.

92829971_835248640291598_6513657236865155072_n.jpg

Packed away in each spur is a sweet nectary treat. The only insects capable of reaching it are bumblebees (Bombus spp.). With their long tongues, these bees flock to the bright white and yellow flowers with vigor. Aside from the occasional thief who chews a hole at the end of the spur, robust bumblebees have this meal all to themselves. In fact, this relationship is so in sync that nothing else is capable of effectively pollinating the plant.

After a brief flowering period, the plant will set seed. Like many other spring ephemerals, they attach a fleshy structure to their seeds called an elaiosome. This attracts foraging ants in the genus Aphaenogaster, who collect the seeds and take them back to their nests. Once there, the elaiosome is sometimes eaten but mostly the seeds are disposed of in trash middens. In this way, the seeds find a nutrient-rich microclimate safe from seed predators in which to germinate. It is a safe bet that most of the patches you find owe their existence to these industrious little insects.

Further Reading: [1] [2]

Trout Lily Appreciation

This video is a celebration of the white trout lily (Erythronium albidum) and its various spring ephemeral neighbors. We even talk about the threat that invasive species like garlic mustard (Alliara petiolata).

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Botanist
Track:
https://verdant-realm-botanist.bandcamp.com/

Early Spring Ephemerals

Join us as we go in search of some of the earliest spring ephemerals. In this episode we come face to face with the aptly named harbinger of spring (Erigenia bulbosa) and the lovely Hepatica nobilis.

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Stranger In My Town
Track: Air
https://strangerinmytown.bandcamp.com/

The Giant Genomes of Geophytes

Canopy plant (Paris japonica) Photo by Radek Szuban licensed under CC BY-NC 2.0

Canopy plant (Paris japonica) Photo by Radek Szuban licensed under CC BY-NC 2.0

A geophyte is any plant with a short, seasonal lifestyle and some form of underground storage organ ( bulb, tuber, thick rhizome, etc.). Plants hailing from a variety of families fall into this category. However, they share more than just a similar life history. A disproportionate amount of geophytic plants also possess massive genomes. 

As we have discussed in previous posts, life isn't easy for geophytes. Cold temperatures, a short growing season, and plenty of hungry herbivores represent countless hurdles that must be overcome. That is why many geophytes opt for rapid growth as soon as conditions are right. However, they don't do this via rapid cell division. 

Dutchman's breeches (Dicentra cucullaria) emerging with preformed buds.

Dutchman's breeches (Dicentra cucullaria) emerging with preformed buds.

Instead, geophytes spend the "dormant" months pre-growing all of their organs. What's more, the cells that make up their leaves and flowers are generally much larger than cells found in non-geophytes. This is where that large genome comes into plant. If they had to wait until the first few weeks of spring to start their development, a large genome would only get in the way. Their dormant season growth means that these plants don't have to worry about streamlining the process of cellular division. They can take their time. 

As such, an accumulation of genetic material isn't detrimental. Instead, it may actually be quite beneficial for geophytes. Associated with large genomes are things like larger stomata, which helps these plants better regulate their water needs. The large genomes may very well be the reason that many geophytic plants are so good at taking advantage of such ephemeral growing conditions. 

When the right conditions present themselves, geophytes don't waste time. Pre-formed organs like leaves and flowers simply have to fill with water instead of having to wait for tissues to divide and differentiate. Water is plentiful during the spring so geophytes can rely on turgor pressure within their large cells for stability rather than investing in thick cell walls. That is why so many spring blooming plants feel so fleshy to the touch. 

Taken together, we can see how large genomes and a unique growth strategy have allowed these plants to exploit seasonally available habitats. It is worth noting, however, that this is far from the complete picture. With such a wide variety of plant species adopting a geophytic lifestyle, we still have a lot to learn about the secret lives of these plants.

Photo Credits: [1] [2]

Further Reading: [1]