The ancestors of many Hibiscus cultivars are in trouble

D26_D-_XQAEwqAH.jpg

The genus Hibiscus contains some of the most widely recognized and venerated plants on Earth. Take a trip to any garden center and nursery and you are almost guaranteed to find numerous brightly colored Hibiscus cultivars. No doubt many of you reading this probably have one growing in or around your home. For as common as these cultivars are, most of the species that were involved in producing them are either critically endangered or feared extinct in the wild.

Many of the common tropical Hibiscus cultivars you are likely to encounter involve Hibiscus rosa-sinensis and around 10 distinct species hailing from either one of the Mascarene islands in the Indian Ocean or one of the numerous islands in the central and south Pacific. All of these plants belong to a subgroup within the mallow family known scientifically as Lilibiscus. I won’t bore you with the taxonomic details but what is important to know is that, despite their wide and often non-overlapping distributions, members of this group readily hybridize with one another. It’s this penchant for hybridization that has made them so popular with plant breeders over the centuries.

Hibiscus rosa-sinensis by B.Navex licensed under CC BY-ND 2.0.

Hibiscus rosa-sinensis by B.Navex licensed under CC BY-ND 2.0.

In fact, the ease with which these plants are cultivated and bred has obscured the origins of the aforementioned Hibiscus rosa-sinensis. Today, this lovely red mallow grows wild throughout many regions of the Asian continent, however, experts believe that many of these populations represent “escapes” from cultivation. This species has enjoyed so much popularity over the years that no one is quite sure where it originated. Sadly, the same cannot be said for its relatives.

Islands both big and small are metaphorical playgrounds for evolution. This is why islands often boast species of both plant and animal that are found nowhere else in the world. Unfortunately, many of the factors that make islands such hot spots for evolution also make them hot spots for extinctions. Isolation, limited land area, and stochastic events combine to make it all too easy to lose island flora and fauna for good. Add humans into the mix and things get even worse. Humans have been the cause of countless island extinctions ever since our species began island hopping.

The critically endangered Hibiscus fragilis. By Wendy Strahm licensed under CC BY-ND 2.0.

The critically endangered Hibiscus fragilis. By Wendy Strahm licensed under CC BY-ND 2.0.

For the case of these 10 members of Lilibiscus, a human presence on their islands of origins has been devastating. Habitat loss due to farming and development and the introduction of invasive species have all but wiped out most populations. For species like Hibiscus fragilis, an endemic of Mauritius, their numbers have been reduced to only a small handful of plants in the wild. Other species like Hibiscus storckii, an endemic of Fiji, were thought to be completely extinct until a few plants were rediscovered. It would seem that after the initial collections were made and brought into cultivation, no one gave these plants much thought. Forgotten, they dwindled in numbers until few, if any, remained.

As if things weren’t already bad for these rare Hibiscus species, humans are adding yet another nail in the coffin for many of them - hybridization. Because Hibiscus are so popular as garden plants, cultivars are commonly planted in gardens wherever climates allow. As I mentioned above, members of the Lilibiscus group readily hybridize with one another. Whereas cultivars are guided by human intervention, that doesn’t mean they need humans to mix their genes. If a cultivar is planted in the proximity of a wild species, there is nothing stopping pollinators from visiting and exchanging pollen with both plants.

Hibiscus storckii was once thought to be extinct until a few plants were rediscovered. BY Jeff Delonge licensed under CC BY-ND 2.0.

Hibiscus storckii was once thought to be extinct until a few plants were rediscovered. BY Jeff Delonge licensed under CC BY-ND 2.0.

If a hybrid cultivar picks up new genes from its wild relatives, no big deal. Either those seeds will never be left to germinate or, if they do, a surprising new variety could be made. Things aren’t so innocuous when gene flow happens in the other direction. One of the biggest threats to the conservation of species like H. fragilis now comes from hybridization with garden Hibiscus. Cultivars are not selected for their ability to thrive in the wild. They are bred and selected for large, showy flowers and a prolonged blooming period. These are not good traits for a wild species with a very specific niche. As the remaining wild H. fragilis are swamped with hybrid genes from cultivars growing in nearby gardens, their offspring no longer contain the characteristics that makes this species unique. One or two hybrids every now and then is probably not an issue, but if those hybrids survive and flower, the stability and fitness of that population will gradually decline as repeated backcrossing occurs.

These issues are not restricted only to the species mentioned above. The tropical cultivars we know and love represent a hybridization complex of Hibiscus species such as H. arnottianus, H. boryanus, H. denisonii, H. genevii, H. kokio, H. liliiflorus, and H. schizopetalus. Nearly all of these species are suffering similar fates in their native range. However, there is a silver lining to all of this. Because Hibiscus often lend so well to cultivation, conservationists have been able to step in before some species are lost forever. Seeds have been collected for both seed banking and germination trials, cuttings have been taken and grown into clones as a means of preserving what genetic diversity remains, and botanical gardens around the world are now adding many of these species to their living collections.

Though the future is not certain for many of these plants, it is certainly looking much better than it was only a few decades ago. While human activity has caused most of these problems, our efforts are now critical in reversing at least some of the damage that has been done.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3] [4]


Drunken Pollinators & Chemical Trickery: Musings on the Complex Floral Chemistry of a Generalist Orchid

RSCN5418.jpg

There was a time when I thought that all orchids were finicky botanical jewels, destined to perish at the slightest disturbance. Certainly many species fit this description to some degree, but more often these days I am appreciating the role disturbance can play in maintaining many orchid populations. Seeing various genera like Platanthera or Goodyera thriving along trails and old dirt roads, lawn orchids (Zeuxine strateumatica) growing in manicured lawns, or even various Pleurothallids growing on water pipes in the mountains of Panama has opened my eyes to the diversity of ecological strategies this massive family of flowering plants employs.

Of the examples mentioned above, none can hold a candle to the hardiness of the broad-leaved helleborine orchid (Epipactis helleborine) when it comes to thriving in disturbed habitats. Originally native throughout much of Europe, North Africa, and Asia, this strangely beautiful orchid can now be found growing throughout many temperate and sub-tropical regions of the world. Indeed, this is one species of orchid that has greatly benefited from human disturbance. In fact, I more often see this orchid growing in and around cities and along roadsides than I do in natural settings (not to say it isn’t there too). In many areas here in North America, the broad-leaved helleborine orchid has gone from a naturalized oddity into a full blown invasive.

Much of its success in conquering new and often highly disturbed territory has to do with its relationship with mycorrhizal fungi. Like all orchids, the broad-leaved helleborine orchid requires fungi for germination and growth, relying on the symbiotic relationship into maturity. Without mycorrhizal fungi, these orchids could not survive. However, while many orchids seem to be picky about the fungi they will partner with, the broad-leaved helleborine is something of a generalist in this regard. At least one study in Europe was able to demonstrate that over 60 distinct groups of mycorrhizal fungi were able to partner with this orchid. By opening itself up to a wider variety of fungal partners, the broad-leaved helleborine orchid is able to live in places where pickier orchids cannot.

DSCN5397.JPG

Another key to this orchids success has to do with its pollination strategy. Here again we see that being a generalist comes with serious advantages. Though wasps are thought to be the most effective pollinators, myriad other insects from various kinds of flies to beetles and butterflies will visit these blooms. How is it that this orchid has become to appealing to such a wide variety of insects? The answer is chemistry.

The broad-leaved helleborine orchid is something of a skilled chemist. When scientists analyzed the nectar produced in the cup-shaped lip of the flower, they found a diverse array of chemicals, many of which lend to some incredible insect interactions. For starters, highly scented compounds such as vanillin (the compound responsible for the vanilla scent and flavor of Vanilla orchids) are produced in the nectar, which certainly attracts many different kinds of insects. There is also evidence of some floral mimicry going on as well.

Scientists found a group of chemicals called kairomones in broad-leaved helleborine nectar, which are very similar to aphid alarm pheromones. When released by aphids, they warn nearby kin that predators are in the area. In one sense, the production of these compounds in the nectar may serve to ward off aphids looking for a new place to feed. However, these chemicals also appear to function as pollinator attractants. For aphid predators like hoverflies, these pheromones act as a dinner bell, signalling good egg laying sites for gravid female hoverflies whose larvae gorge themselves on aphids as they grow. It just so happens that hoverflies also serve as important pollinators for the broad-leaved helleborine orchid.

A series of compounds broadly classified as green-leaf volatiles were found in the nectar as well. Many plants produce these compounds when their leaves are damaged by insect feeding. Like the aphid example above, green-leaf volatiles signal to nearby predatory insects that plump herbivores are nearby. For instance, when the caterpillars of the cabbage white butterfly feed on cabbage plants, green-leaf volatiles attract wasps, which quickly set to work eating the caterpillars, relieving the plant of its herbivores in the process. As previously mentioned, wasps are thought to be the main pollinators for this orchid so attracting them makes sense. However, attracting pollinators using chemical trickery can be risky. What happens when a pollinator shows up and realizes there is no plump aphid or caterpillar to eat?

Oldhorster_Moor_(LSG-H_46),_Epipactis_helleborine.jpg

The answer to this comes from a series of other compounds produced in this orchid’s nectar. Few insects will turn down a sugary meal, and indeed, many visitors end up sipping some broad-leaved helleborine nectar. Sit back and watch and it won’t take long to realize that these insects appear to quickly become intoxicated. Their behavior becomes sluggish and they generally bumble around the flowers until they sober up and fly off. This is not happenstance. This orchid actively gets its pollinators wasted, but how?

Along with the chemicals we already touched on, scientists have also found a plethora of narcotics in broad-leaved helleborine nectar. These include various types of alcohols and even chemicals similar to that of opioids like Oxycodone. Now, some have argued that the alcohols are not the product of the plant but rather the result of fermentation by yeasts and bacteria living within the nectar. However, the presence of different antimicrobial compounds coupled with the sheer concentrations of alcohols within the nectar appear to discount this hypothesis and point to the plant as the sole creator. Nonetheless, after a few sips of this narcotic concoction, insects like wasps and flies spend a lot more time at each flower than they would if they remained sober the whole time. This has led to the suggestion that narcotics help improve the likelihood of successful pollination.

Indeed, the broad-leaved helleborine orchid seems to have no issues with sex. Most plants produce a bountiful crop of seed-laden fruits each summer. In fact, it has been found that plants growing in areas of high human disturbance tend to set more seed than plants growing in natural areas. Scientists suggest this is due to the wide variety of pollinators that are attracted to the complex nectar. Human environments like cities tend to have a different and sometimes more varied suite of insects than more rural areas, meaning there are more opportunities for run ins with potential pollinators.

The broad-leaved helleborine orchid stands as an example of the complexities of the orchid family. Few orchids are as generalist in their ecology as this species. Its ability to grow where others can’t while taking advantage of a variety of pollinators has lent to the extreme success of this species world wide.

Photo Credit: [1]

Further Reading: [1] [2] [3] [4] [5] [6]

American Bittersweet

Photo by Peter Gorman licensed by CC BY-NC-SA 2.0

Photo by Peter Gorman licensed by CC BY-NC-SA 2.0

As the bright colors of fall start to give way to the dreary grays of winter, people often go looking for ways to bring a little bit of botanical color indoors to enjoy. It is around this time of year that one species in particular starts turning up in flower arrangements, however, it's not the flowers people are interested in but rather the seeds. This species is so popular in arrangements that its numbers in the wild are facing steep declines.

Meet Celastrus scandens, the American bittersweet vine. It hails from the family Celastraceae, which makes it a distant cousins of Euonymus. This lovely climbing vine is native to much to eastern North America and is most at home growing at the edge of woodlots, thickets, and along rocky bluffs and outcroppings. As mentioned, It isn't the flowers of this species that catch the eye but rather the showy seeds. Encased in bright orange capsules, the crimson berry-like fruits are toxic to us mammals but highly sought after by birds. Despite their toxicity, humans nonetheless covet these fruits. Entire vines are cut down and used in arrangements, especially during the months of fall. This has had detrimental effects on wild populations of American bittersweet.

Celastrus_scandens_27297.jpg

To add insult to injury, its Asian cousin, Celastrus orbiculatus, has been introduced to this continent and is running amuck in the wild. Known commonly as Oriental bittersweet, this invasive is quickly outpacing its native cousin throughout much of North America. It would seem that Oriental bittersweet can adapt to a wider range of habitat types than American bittersweet and, where these species co-occur, hybridization has been reported. The hybrid offspring are not only fertile, they also have shorter seed dormancy and are much more vigorous growers than either of the parents.

Photo by MN Department of Agriculture

Photo by MN Department of Agriculture

Unfortunately it can be hard to tell these species apart. However, with a little patience and a decent field guide, differences become apparent. The best diagnostic feature I have found is that American bittersweet carries its flowers and fruit on the terminal ends of the stems whereas Oriental bittersweet carries them in the axils of the leaves.

All in all, American bittersweet is a lovely native vine. Its beauty in our eyes has, like so many other plant species, created some serious survival issues. Coupled with the the threat of its highly aggressive Asian cousin, the future of this wonderful species remains uncertain. That being said, this doesn’t have to remain a trend. The good news is that it does quite well as a garden species and many nurseries are beginning to carry the native over the invasive. If you live in eastern North America, consider using this plant in your landscape. It would certainly help. And, if flower arrangements are something you enjoy, please give American bittersweet a break.

Celastrus_scandens.jpg

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4] [5]

Path Rush

Photo by Matt Lavin licensed by CC BY-SA 2.0

Photo by Matt Lavin licensed by CC BY-SA 2.0

Path rush (Juncus tenuis) is one of those plants that has really benefited from human expansion. Originally native to North America, it can now be found in numerous countries around the globe. It owes much of its success to both its ability to tolerate lots of disturbance as well as an ingenious seed dispersal mechanism. If you like to hike, there is a good chance you have encountered path rush somewhere along the way. There is also a strong chance that you have dispersed its seeds.

Juncus_tenuis_Sturm15.jpg

Path rush is a relatively small species, topping out around 60 cm in height. Because it frequently grows where foot traffic is heavy, plants don’t always reach such stature. Like most rushes, it has round stems and surprisingly attractive flowers, though one would need a hand lens to fully appreciate their beauty. Flowering for path rush occurs during the summer and it is thought that wind is the main pollination mechanism for this species.

The darker vegetation running along the path is all path rush! Photo by Tom Potterfield licensed by CC BY-NC-SA 2.0

The darker vegetation running along the path is all path rush! Photo by Tom Potterfield licensed by CC BY-NC-SA 2.0

Following pollination, each flower is replaced by a tiny capsule filled with tiny seeds. Each seed is covered in a substance that turns into a sticky mucilage when wet. This mucilage is how path rush manages to move around the landscape so easily. The sticky seeds glom onto pretty much everything from fur to feathers, boots to car tires. This is why you most often find path rush on, well, paths! Its sticky seeds are carried far and wide by foot traffic. It is also why you can now find path rush growing well outside of North America.

Path rush enjoying a crack in the sidewalk.

Path rush enjoying a crack in the sidewalk.

Path rush frequents more habitats than simply paths too. The key to its success is soil disturbance. Anywhere the soil has been compacted and disturbed, path rush can find its niche. With little competition from surrounding vegetation, this tiny rush can grow into impressive colonies. Even cracks in asphalt can harbor a plant or two. Aside from its ability to tolerate soil disturbance, its tough, stringy foliage is not fed on by a lot of herbivores, which gives it yet another leg up on potential competitors. All in all, this is one tough little plant.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2]



Meet the She-Oaks

Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

No, what you are looking at here is not a type of conifer. Nor is it an oak. This odd plant belongs in its own family - Casuarinaceae. Despite their gymnosperm appearance, this is in fact a family of flowering plants. Though the name “she-oak” does hint at their larger position within the order Fagales, it was actually given to these trees in reference to the density of their wood in comparison to more commonly harvested oak species. Other common names for trees in this group include ironwood, bull-oak, beefwood.

As a whole this family sorts out as sister to Myricaceae in the order Fagales. It' is comprised of 4 genera (Allocasuarina, Casuarina, Ceuthostoma, and Gymnostoma) and roughly 91 species spread among Australia, Malaysia, and much of Polynesia. It is extremely difficult to make generalizations across so many species but there is one aspect of this family that makes them stand out - their appearance.

Gymnostoma sp. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Gymnostoma sp. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Gymnostoma nobile in Sarawak, Malaysia. Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Gymnostoma nobile in Sarawak, Malaysia. Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Without close inspection, one could be forgiven for thinking the various Casuarinaceae were species of conifer. For starters, their leaves have been reduced to tiny whorls surrounding their photosynthetic stems. The stems themselves have taken up the role of photosynthetic organs, which is one of the reasons this family is known for its drought tolerance. Reducing the surface area available for gas exchange helps to reduce water loss in the process. The stems themselves are arranged with whorls around the branches, giving them a rather bunched appearance. The photosynthetic branches are sometimes referred to as being ‘equisetiform’ as they superficially resemble the stems of Equisetum. They do not shed their photosynthetic branches and are therefore evergreen.

As mentioned, these are flowering plants. Their flowers themselves are aggregated into spike-like inflorescences near the tips of branches. Clusters of male flowers resemble catkin-like strobili and are often brightly colored. Female flowers are clustered into a more ovoid shape, with long, filamentous pistils sticking out like fiery, red pompoms. After fertilization, bracts at the base of the female flowers swell and the whole inflorescence starts to look more like some sort of a conifer cone than anything floral. This may have to do with the fact that, like conifers, the various Casuarinaceae are wind pollinated. Therefore, their reproductive structures have had to deal with similar selective forces related to optimizing pollen dispersal and capture.

Casuarina equisetifolia with catkin-like male flowers and smaller, red female flowers. Photo by B.navez licensed under the GNU Free Documentation License.

Casuarina equisetifolia with catkin-like male flowers and smaller, red female flowers. Photo by B.navez licensed under the GNU Free Documentation License.

Allocasuarina distyla female flowers and infructescence. Photo by John Tann licensed under CC BY 2.0

Allocasuarina distyla female flowers and infructescence. Photo by John Tann licensed under CC BY 2.0

Another interesting trait common to Casuarinaceae is the ability to fix nitrogen. The plants themselves don’t do the fixing, rather they form specialized nodules on their roots that house nitrogen-fixing bacteria. Unlike perennial legumes that regrow their nodules year after year, the members of Casuarinaceae hold onto their nodules, which can grow into impressive structures over time. This ability to house nitrogen-fixing bacteria is also shared with other members of the order Fagales, including members of Betulaceae and Myricaceae.

Thanks to the fact that they can tolerate drought, fix nitrogen, and have high timber value, species of Casuarinaceae have been introduced far outside of their native ranges. This has created yet another invasive species issue. Various Casuarinaceae have become serious pests in places like Central and South America, the Carribbean, and the Middle East. Control of such hardy plants can be extremely difficult once they reach a critical mass that maintains them on the landscape. Keep you eye out for these species. Not only are they interesting in their own right, knowing them can help you better understand their role in ecosystems both native and not.

Allocasuarina decaisneana (Desert Oaks), Central Australia. Photo by Cgoodwin licensed under the GNU Free Documentation License.

Allocasuarina decaisneana (Desert Oaks), Central Australia. Photo by Cgoodwin licensed under the GNU Free Documentation License.

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4]

Trout Lily Appreciation

This video is a celebration of the white trout lily (Erythronium albidum) and its various spring ephemeral neighbors. We even talk about the threat that invasive species like garlic mustard (Alliara petiolata).

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Botanist
Track:
https://verdant-realm-botanist.bandcamp.com/

California Bumblebee Decline Linked to Feral Honeybees

Photo by Alvesgaspar licensed under CC BY-SA 3.0

Photo by Alvesgaspar licensed under CC BY-SA 3.0

Worldwide, pollinators are having a rough go of it. Humans have altered the landscape to such a degree that many species simply can't keep up. The proverbial poster child for pollinator issues is the honeybee (Apis mellifera). As a result, countless native pollinators get the short shrift when it comes to media attention. This isn't good because outside of intense industrial agriculture, native pollinators make up the bulk of pollination services. Similarly, honeybee fandom often overshadows any potential negative effects these introduced insects might be having on native pollinators.

Long term scientific investigations are starting to paint a more nuanced picture of the impact introduced honeybees are having on native ecosystems. For instance, research based out of California is finding that honeybees are playing a big role in the decline of native bumblebee populations. What's more, these negative impacts are only made worse in the light of climate change.

Licensed under public domain

Licensed under public domain

For over 15 years, ecologist Dr. Diane Thompson has been studying bumblebee populations in central California. At no point during those early years did any of the bumblebee species she focuses on show signs of decline. In fact, they were quite common. Then, around the year 2000, feral honeybees started to establish themselves in the area. Honeybee colonies were becoming more and more numerous each and every year and that is when she started noticing changes in bumblebee behavior and numbers.

You see, honeybees are extremely successful foragers. They are generalists, which means they can visit a wide variety of flower types. As a result, they are extremely good at competing for floral resources compared to native bumblebees. Her results show that increases in the number of honeybee colonies caused not only a reduction in foraging among the native bumblebees, they also caused a reduction in bumblebee colony success. The native bumblebees simply weren't raising as many young as they were before honeybees entered the system.

Decreased rainfall cause a decline in flower densities of Scrophularia californica, a key resource for native bumblebees in this system. Photo by USFWS - Pacific Region licensed under CC BY-NC 2.0

Decreased rainfall cause a decline in flower densities of Scrophularia californica, a key resource for native bumblebees in this system. Photo by USFWS - Pacific Region licensed under CC BY-NC 2.0

Climate change is only making things worse. As drought years become not only more severe but also more intense, the amount of flowers available during the growing season also declines. With fewer flowers on the landscape, bumblebees and honeybees are forced into closer proximity for foraging and the clear winner in most foraging disputes are the tenacious honeybees. As such, bumblebees are chased off the already diminishing floral displays. By 2014, Dr. Thompson had quantified a significant decline in native bumblebee populations as a result.

It would be all too convenient to say that this research represents an isolated case. It does not. More and more research is finding that honeybees frequently out-compete native pollinators for resources such as food and nesting sites. Such effects are especially pronounced in rapidly changing ecosystems. Although honeybees are here to stay, it is important that we realize the impacts that these feral insects are having on our native ecosystems and begin to better appreciate and facilitate the services provided by our native pollinators. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3] [4]

Ferns Afloat

Photo by Le.Loup.Gris licensed under CC BY-SA 3.0

Photo by Le.Loup.Gris licensed under CC BY-SA 3.0

My introduction to the genus Salvinia was as an oddball aquarium plant floating in a display tank at the local pet store. I knew nothing about plants at the time but I found it to be rather charming nonetheless. Every time the green raft of leaves floated under the filter outlet, water droplets would bead off them like water off of a ducks back. Even more attractive were the upside down forest of "roots" which were actively sheltering a bunch of baby guppies. 

I grew some Salvinia for a few years before my interest in maintaining aquariums faded. I had forgotten about them for quite some time. Much later as I was diving into the wild world of botany, I started revisiting some of the plants that I had grown in various aquariums to learn more about them. It wasn't long before the memory of Salvinia returned. A quick search revealed something astonishing. Salvinia are not flowering plants. They are ferns! 

The genus Salvinia is wide spread. They can be found growing naturally throughout North, Central, and South America, the West Indies, Europe, Africa, and Madagascar. Sadly, because of their popularity as aquarium and pond plants, a few species have become extremely aggressive invaders in many water ways. More on that in a bit. 

Salvinia comprises roughly 12 different species. Of these, at least 4 are suspected to be naturally occurring hybrids. As you have probably already gathered, these ferns live out their entire lives as floating aquatic plants. Their most obvious feature are the pairs of fuzzy green leaves borne on tiny branching stems. These leaves are covered in trichomes that repel water, thus keeping them dry despite their aquatic habit. 

These are not roots! Photo by Carassiuslike licensed under CC BY-SA 4.0

These are not roots! Photo by Carassiuslike licensed under CC BY-SA 4.0

Less obvious are the other types of leaves these ferns produce. What looks like roots dangling below the water's surface are actually highly specialized, finely dissected leaves! I was super shocked to learn this and to be honest, it makes me appreciate these odd little ferns even more. It is on those underwater leaves that the spores are produced. Specialized structures called sporocarps form like tiny nodules on the tips of the leaf hairs.

Sporocarps come in two sizes, each producing its own kind of spore. Large sporocarps produce megaspores while the smaller sporocarps produce microspores. This reproductive strategy is called heterospory. Microspores germinate into gametophytes containing male sex organs or "antheridia," whereas the megaspores develop into gametophytes containing female sex organs or "archegonia." 

As I mentioned above, some species of Salvinia have become aggressive invaders, especially in tropical and sub-tropical water ways. Original introductions were likely via plants released from aquariums and ponds but their small spores and vegetative growth habit means new introductions occur all too easily. Left unchecked, invasive Salvinia can form impenetrable mats that completely cover entire bodies of water and can be upwards of 2 feet thick!

Sporocarps galore! Photo by Kenraiz licensed under CC BY-SA 4.0

Sporocarps galore! Photo by Kenraiz licensed under CC BY-SA 4.0

Lots of work has been done to find a cost effective way to control invasive Salvinia populations. A tiny weevil known scientifically as Cyrtobagous singularis has been used with great success in places like Australia. Still, the best way to fight invasive species is to prevent them from spreading into new areas. Check your boots, check your boats, and never ever dump your aquarium or pond plants into local water ways. Provided you pay attention, Salvinia are rather fascinating plants that really break the mold as far as most ferns are concerned. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

 

This Isn't Even My Final Form! A Pothos Story

Photo by Forest and Kim Starr licensed under CC BY 2.0

Photo by Forest and Kim Starr licensed under CC BY 2.0

Pothos might be one of the most widely cultivated plants in modern history. These vining aroids are so common that I don't think I can name a single person in my life that hasn't had one in their house at some point or another. Renowned for their hardy disposition and ability to handle extremely low light conditions, they have become famous the world over. They are so common that it is all too easy to forget that they have a wild origin. What's more, few of us ever get to see a mature specimen. The plants living in our homes and offices are mere juveniles, struggling to hang on as they search for a canopy that isn't there.

Trying to find information on the progenitors of these ubiquitous houseplants can be a bit confusing. To do so, one must figure out which species they are talking about. Without a proper scientific name, it is nearly impossible to know which plant to refer to. Common names aside, pothos have also undergone a lot of taxonomic revisions since their introduction to the scientific community. Also, what was thought to be a single species is actually a couple.

Photo by Forest and Kim Starr licensed under CC BY 2.0

Photo by Forest and Kim Starr licensed under CC BY 2.0

To start with, the plants you have growing in your home are no longer considered Pothos. The genus Pothos seemed to be a dumping ground for a lot of nondescript aroid vines throughout the last century. Many species were placed there until proper materials were thoroughly scrutinized. Today, what we know as a "Pothos" has been moved into the genus Epipremnum. This revision did not put all controversies to rest, however, as the morphological changes these plants go through as they age can make things quite tricky.

Photo by Tauʻolunga licensed under CC BY-SA 3.0

Photo by Tauʻolunga licensed under CC BY-SA 3.0

As I mentioned, the plants we keep in our homes are still in their juvenile form. Like all plants, these vines start out small. When they find a solid structure in a decent location, they make their bid for the canopy. Up in a tree in reach of life giving sunlight, these vines really hit their stride. They quickly grow their own version of a canopy that consists of massive leaves nearing 2 feet in length! This is when these plants begin to flower. 

As is typical for the family, the inflorescence consists of a spadix covered by a leafy spathe. The spadix itself is covered in minute flowers and these are the key to properly identifying species. When pothos first made its way into the hands of botanists, all they had to go on were the small, juvenile leaves. This is why their taxonomy had been such a mess for so long. Materials obtained in 1880 were originally named Pothos aureus. It was then moved into the genus Scindapsus in 1908.

Controversy surrounding a proper generic placement continued throughout the 1900's. Then, in the early 1960's, an aroid expert was finally able to get their hands on an inflorescence. By 1964, it was established that these plants did indeed belong in the genus Epipremnum. Sadly, confusion did not end there. The plasticity in forms and colors these vines exhibit left many confusing a handful of species within the group. At various times since the late 1960's, E. aureum and E. pinnatum have been considered two forms of the same species as well as two distinct species. The latest evidence I am aware of is that these two vines are in fact distinct enough to warrant species status. 

Photo by Mokkie licensed under CC BY-SA 3.0

Photo by Mokkie licensed under CC BY-SA 3.0

The plant we most often encounter is E. aureum. Its long history of following humans wherever they go has led to it becoming an aggressive invader throughout many regions of the world. It is considered a noxious weed in places like Australia, Southeast Asia, India, Pakistan, and Hawai'i (just to name a few). It does so well in these places that it has been a little difficult to figure out where these plants originated. Thanks to some solid detective work, E. aureum is now believed to be native to Mo'orea Island off the west coast of French Polynesia. 

Epipremnum pinnatum is similar until you see an adult plant. Photo by Mokkie licensed under CC BY-SA 3.0

Epipremnum pinnatum is similar until you see an adult plant. Photo by Mokkie licensed under CC BY-SA 3.0

It is unlikely that most folks have what it takes to grow this species to its full potential in their home. They are simply too large and require ample sunlight, nutrients, and humidity to hit their stride. Nonetheless there is something to be said for the familiarity we have with these plants. They have managed to enthrall us just enough to be a fixture in so many homes, offices, and shopping centers. It has also helped them conquer far more than the tiny Pacific island on which they evolved. Becoming an invasive species always seems to have a strong human element and this aroid is the perfect example.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] 

 

Getting to Know Elodea

Photo by Christian Fischer licensed under CC BY-SA 3.0

Photo by Christian Fischer licensed under CC BY-SA 3.0

When I think back on it, one of the first plants I ever actively tried growing was waterweed (Elodea canadensis). My 4th grade teacher had invested in a unit on the ecosystem concept. We all brought in 2 liter soda bottles that we craftily turned into mini terrariums. The top half of the terrarium was filled with soil and planted with some grass seed. The bottom half was filled with water and some gravel. In that portion we placed a single guppy and a few sprigs of Elodea

The idea was to teach us about water and nutrient cycles. It didn't work out too well as most of my classmates abandoned theirs not long after the unit was over. Being the avid little nerd that I was, I fell deeply in love with my new miniature ecosystem. The grass didn't last long but the guppy and the Elodea did. Since then, I have kept Elodea in various aquariums throughout the years but never gave it much thought. It is easy enough to grow but it never did much. Today I would like to make up for my lack of concern for this plant by taking a closer look at Elodea

An example of the soda bottle terrariums. Photo by Kara Nelson [source]

An example of the soda bottle terrariums. Photo by Kara Nelson [source]

The genus Elodea is one of 16 genera that make up the family Hydrocharitaceae and is comprised of 6 species. All 6 of these plants are native to either North or South America, with Elodea canadensis preferring the cooler regions of northern North America. They are adaptable plants and can grow both rooted or floating in a variety of aquatic conditions. It is this adaptability that has made them so popular in the aquarium trade. It is also the reason why the genus is considered a nasty aquatic invasive throughout the globe. For this reason, I do not recommend growing this plant outdoors in any way, shape, or form unless that species is native to your region. 

Believe it or not, Elodea are indeed flowering plants. Small white to pink flowers are borne on delicate stalks at the water's surface. They are attractive structures that aren't frequently observed. In fact, it is such a rare occurrence that trying to figure out what exactly pollinates them proved to be quite difficult. What we do know is that sexual reproduction and seed set is not the main way in which these plants reproduce. 

Photo by R a mueller licensed under CC BY-SA 3.0

Photo by R a mueller licensed under CC BY-SA 3.0

Anyone who has grown them in an aquarium knows that it doesn't take much to propagate an Elodea plant. They have a remarkable ability for cloning themselves from mere fragments of the stem. This is yet another reason why they can become so invasive. Plants growing in temperate waterways produce a thick bud at the tips of their stems come fall. This is how they overwinter. Once favorable temperatures return, this bud "germinates" and grows into a new plant. In more mild climates, these plants are evergreen. 

One of the most interesting aspects of Elodea ecology is that at least two species, E canadensis and E. nuttallii, are considered allelopathic. In other words, these plants produce secondary chemicals in their tissues that inhibit the growth of other photosynthetic organisms. In this case, their allelopathic nature is believed to be a response to epiphytic algae and cyanobacteria.

Slow growing aquatic plants must contend with films of algae and cyanobacteria building up on their leaves. Under certain conditions, this buildup can outpace the plants' ability to deal with it and ends up completely blocking all sunlight reaching the leaves. Researchers found that chemicals produced by these two species of Elodea actually inhibited the growth of algae and cyanobacteria on their leaves, thus reducing the competition for light in their aquatic environments. 

Elodea make for a wonderful introduction to the world of aquatic plants. They are easy to grow and, if cared for properly, look really cool. Just remember that their hardy nature also makes them an aggressive invader where they are not native. Never ever dump the contents of an aquarium into local water ways. Provided you keep that in mind, Elodea can be a wonderful introduction to the home aquarium. If you are lucky enough to see them in flower in the wild, take the time to enjoy it. Who knows when you will see it again. 

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] 

Bird Pollination Of The Bird Of Paradise

Public domain

Public domain

Who hasn't stared in wonderment at the inflorescence of a bird of paradise? One doesn't need too much of an imagination to understand how these plants got this common name. Flowers, however, did not evolve in response to our aesthetic tastes. They are solely for sex and in the case of bird of paradise, Strelitzia reginae, pollination involves birds.

In its native range in South Africa, S. reginae is pollinated by sunbirds, primarily the Cape weaver (Ploceus capensis). That alluring floral morphology is wonderfully adapted to maximize the chances of successful cross-pollination by their avian visitors. Cape weavers are looking for a sip of energy rich nectar. To get at said nectar, the birds must perch on the inflorescence. Not any position will do either.

Photo by Forest & Kim Starr licensed under CC BY 3.0

Photo by Forest & Kim Starr licensed under CC BY 3.0

To get their reward, the birds must perch so that their beaks are at just the right angle to reach down into the floral tubes. The plant ensures this by providing a convenient perch. Those fused blue petals are structurally reinforced and actually serve as a convenient perch! Upon alighting on the perch, the hidden anthers are thrust outward from their resting chamber, brushing up against the bird's feet in the process. The Cape weaver doesn't move around much once on the flower so self pollination is minimized.

When the bird visits another plant, the process is repeated and pollination is achieved. Seed set is severely pollen limited. This is a good thing considering how popular they are in cultivation. Plants growing outside of South Africa rarely set seed without a helping hand. However, here in North America, some birds seemed to have figured out how to get at bird of paradise nectar.

Observations made in southern California found that at least one species of warbler, the common yellowthroat (Geothlypis trichas), not only made regular visits to a stand of S. reginae, it also seemed to figure out the proper way to do so. Individuals were seen perching on the floral perch and drinking the nectar. They were pretty effective visitors at that. Of the 14,400 inflorescence found within the study area, 88% of them produced viable seed! It seems that far from its native range, S. reginae has a friend in at least one New World warbler. Armed with this knowledge, land owners should be vigilant to ensure this plant doesn't become a problem in climates suitable for its growth.

Photo Credits: [1] [2] [3]

Further Reading: [1]

 

Evidence Of Carnivory In Teasel

Photo by Isidre blanc licensed under CC BY-SA 4.0

Photo by Isidre blanc licensed under CC BY-SA 4.0

As far as carnivorous plants are concerned, the common teasel (Dipsacus fullonum) seems like a strange fit. Observe this plant up close, however, and you might notice something interesting. Its leaves are perfoliate and form a cup-like depression where they attach to the main stem. Not only does this cup regularly fill with water, it also frequently traps small insects.

Many have speculated over the function of this anatomical trap. Much of this speculation has centered around the idea that it may serve as a form of protection for the flowers located above. Insect herbivores climbing up the stem in search of food instead find a moat of water. Some inevitably fall in and drown in the process. Other hypotheses have been put forward as well including the possibility of something approaching carnivory. 

The idea that common teasel could be, to some degree, carnivorous never really went away. For most of this time it has remained entirely theoretical. There simply was no empirical evidence available to say otherwise. All of that changed with a 2011 study published in PLOS. A research duo finally put this theory to the test in the first ever experiment to see if teasel gains any sort of nutrient benefit from its insect victims.

Dipsacus fullonum (Wild Teasel, Common Teasel). Rainwater is held back in leaves. Photo by Björn Appel licensed under CC BY-SA 3.0

Dipsacus fullonum (Wild Teasel, Common Teasel). Rainwater is held back in leaves. Photo by Björn Appel licensed under CC BY-SA 3.0

By systematically supplying teasel plants with insect prey, the team was able to look at how plants responded to the addition of a potential meal. They added various levels of insect larvae to some plants and removed them from others. For their study, evidence would come in the form of some sort of physiological response to the feeding treatments. If teasel really is obtaining nutrients from its insect victims, it stands to reason that those nutrients would be allocated to either growth or reproduction.

The resulting data offers the first evidence that teasel may in fact be benefiting from the insect carcasses. Although the team found no evidence that plants supplemented with insects were increasing in overall biomass, they did see a positive effect on not only the number of seeds produced but also their size. In other words, when fed a diet of insects, the plants weren't growing any larger but they were producing larger amounts of heavier seeds. This is a real boon for a plant with a biennial life cycle like teasel. The more healthy seeds they can produce, the better.

As exciting as these finds are, one must temper their expectations. As the authors themselves state in their paper, these findings must be replicated in order to say for certain that the effects they measured were due to the addition of insect prey. Second, no chemical analyses were made to determine if the plants are actively digesting these insects or even how available nutrients may be absorbed. Simply put, more work is needed. Perhaps teasel is a species that, evolutionary speaking, is on its way to becoming a true carnivore. We still can't say for sure. Nonetheless, they have given us the first evidence in support of a theory that went more than a century without testing. It is interesting to think that there is a strong possibility that if someone wants to see a carnivorous plant, they need go no further than a fallow field.

Photo Credits: [1] [2]

Further Reading: [1]

Understanding the Cocklebur

Photo by Dinesh Valke from Thane, India licensed under CC BY-SA 2.0

Photo by Dinesh Valke from Thane, India licensed under CC BY-SA 2.0

Spend enough time in disturbed areas and you will certainly cross paths with a cocklebur (Xanthium strumarium). As anyone with a dog can tell you, this plant has no problems getting around. It is such a common occurrence in my life that I honestly never stopped long enough to think about its place on the taxonomic tree. I always assumed it was a cousin of the amaranths. You can imagine my surprise then when I recently learned that this hardy species is actually a member of the sunflower family (Asteraceae). 

Cocklebur doesn't seem to fit with most of its composite relatives. For starters, its flowers are not all clustered together into a single flower head. Instead, male and female flowers are borne separately on the same plant. Male flower clusters are produced at the top of the flowering stem. Being wind pollinated, they quickly dump mass quantities of pollen into the air and wither away. The female flowers are clustered lower on the stem and consist of two pistillate florets situated atop a cluster of spiny bracts. 

After fertilization, these bracts swell to form the burs that so many of us have had to dig out of the fur of our loved ones. Inside that bur resides the seeds. Cocklebur is a bit strange in the seed department as well. Instead of producing multiple seeds complete with hairy parachutes, the cocklebur produces two relatively large seeds within each bur. There is a "top" seed, which sits along the curved, convex side of the bur, and a "bottom" seed that sits along the inner flat surface of the bur. Studies performed over a century ago demonstrated that these two seeds are quite important in maintaining cocklebur on the landscape. 

Photo by Dinesh Valke from Thane, India licensed under CC BY-SA 2.0

Photo by Dinesh Valke from Thane, India licensed under CC BY-SA 2.0

You see, cocklebur is an annual. It only has one season to germinate, grow, flower, and produce the next generation. We often think of annual plants as being hardy but in reality, they are often a bit picky about when and where they will grow. For that reason, seed banking is super important. Not every year will produce favorable growing conditions so dormant seeds lying in the soil act as an insurance policy. 

Whereas the bottom seed germinates within a year and maintains the plants presence when times are good, the top seed appears to have a much longer dormancy period. These long-lived seeds can sit in the soil for decades before they decide to germinate. Before humans, when disturbance regimes were a lot less hectic, this strategy likely assured that cocklebur would manage to stick around in any given area for the long term. Whereas fast germinating seeds might have been killed off, the seeds within the seed bank could pop up whenever favorable conditions finally presented themselves. 

Today cocklebur seems to be over-insured. It is a common weed anywhere soil disturbance produces bare soils with poor drainage. The plant seems equally at home growing along scoured stream banks as it does roadsides and farm fields. It is an incredibly plastic species, tuning its growth habit to best fit whatever conditions come its way. As a result, numerous subspecies, varieties, and types have been described over the years but most are not recognized in any serious fashion. 

Sadly, cocklebur can become the villain as its burs get hopelessly tangled in hair and fur. Also, every part of the plant is extremely toxic to mammals. This plant has caused many a death in both livestock and humans. It is an ironic situation to consider that we are so good at creating the exact kind of conditions needed for this species to thrive. Love it or hate it, it is a plant worth some respect. 

Photo Credits: [1] [2] 

Further Reading: [1] [2]

The Flowering Rush

Photo by Quite Adept licensed under CC BY-NC-ND 2.0

Photo by Quite Adept licensed under CC BY-NC-ND 2.0

Say the words "flowering rush" and many will picture some grass-like, pond vegetation. However, the plant I am talking about today is not a rush at all. Known scientifically as Butomus umbellatus, the flowering rush superficially resembles a patch of true rushes, especially when not in flower. However, it is actually quite a unique species and the sole member of the family Butomaceae. Native to parts of Europe and Asia, this beautiful aquatic plant can now be found invading wetlands throughout northern North America.

Growing quite tall and producing an umbel of beautiful pink flowers, it is no wonder that this plant came to North America as a horticultural curiosity. Its overall appearance suggests a relationship with the genus Allium but genetic analysis puts it somewhere near the water plantains - Alismataceae. The interesting thing about this plant is that here in North America, individual populations exhibit either diploid or triploid chromosome counts.

Photo by Christian Fischer licensed under CC BY-SA 3.0

Photo by Christian Fischer licensed under CC BY-SA 3.0

This is most likely a function of its horticultural past. Many commonly grown garden species have been selected for polyploidy in their chromosomes. Polyploid plants are often larger and more hardy than their diploid relatives, mostly due to the extra genetic material they harbor. It has been noted that there seems to be some reproductive differences between diploid and triploid flowering rush populations as a result. Diploids are more likely to reproduce sexually via seeds whereas triploids are usually sterile and reproduce vegetatively. Triploids are also less commonly found as escapees but they are more widely distributed than diploids. This is likely due to the fact that triploids are more commonly planted in gardens.

Whereas it seems that there is plenty of areas where people disagree on the invasive species issue, one thing we must keep in mind is that, no matter where you stand, biological invasions are one of the largest natural experiments this world has ever seen. We mustn't waste any opportunity to learn from these invasions and to gather as much data as we possibly can. Species like flowering rush offer us insights into how and why some species become invasive while others do not. The more we know, the better we can learn from the mistakes of the past.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4] [5] [6]

The White Walnut

Photo by Dan Mullen licensed under CC BY-NC-ND 2.0

Photo by Dan Mullen licensed under CC BY-NC-ND 2.0

I must admit, I am not very savvy when it comes to trees. I love and appreciate them all the same, however, my attention is often paid to the species growing beneath their canopy. last summer changed a lot of that. I was very lucky to be surrounded by people that know trees quite well. Needless to say I picked up a lot of great skills from them. Despite all of this new information knocking around in my brain, there was one tree that seemed to stand out from the rest and that species is Juglans cinerea.

Afternoons and evenings at the research station were a time for sharing. We would all come out of the field each day tired but excited. The days finds were recounted to eager ears. Often these stories segued into our goals for the coming days. That is how I first heard of the elusive "white walnut." I had to admit, it sounded made up. Its as if I was being told a folktale of a tree that lived in the imagination of anyone who spent too much time in the forest. 

Only a handful of people knew what it was. I listened intently for a bit, hoping to pick up some sort of clue as to what exactly this tree was. Finally I couldn't take it any longer so I chimed in and asked. As it turns out, the white walnut is a tree I was already familiar with, though not personally. Another common name for this mysterious tree is the butternut. Ah, common names. 

I instantly recalled a memory from a few years back. A friend of mine was quite excited about finding a handful of these trees. He was very hesitant to reveal the location but as proof of his discovery he produced a handful of nuts that sort of resembled those of a black walnut. These nuts were more egg shaped and not nearly as large. Refocusing on the conversation at hand, I now had a new set of questions. Why was this tree so special? Moreover, why was it so hard to find?

The white walnut has quite a large distribution in relation to all the excitement. Preferring to grow along stream banks in well-drained soils, this tree is native from New Brunswick to northern Arkansas. Its leaflets are downy, its bark is light gray to almost silver, and it has a band of fuzzy hairs along the upper margins of the leaf scars. Its a stunning tree to say the least. 

Sadly, it is a species in decline. As it turns out, the excitement surrounding this tree is due to the fact that finding large, robust adults has become a somewhat rare occurrence. Yet another casualty of the global movement of species from continent to continent, the white walnut is falling victim to an invasive species of fungus known scientifically as Sirococcus clavigignenti-juglandacearum

The fungus enters the tree through wounds in the bark and, through a complex life cycle, causes cankers to form. These cankers open the tree up to subsequent infections and eventually girdle it. The fungus was first discovered in Wisconsin but has now spread throughout the entire range of the tree. The losses in Wisconsin alone are staggering with an estimated 90% infection rate. Farther south in the white walnuts range, it is even worse. Some believe it is only a matter of time before white walnut becomes functionally extinct in areas such as the Carolinas. No one knows for sure where this fungus came from but Asia is a likely candidate.

A sad and all too common story to say the least. It was starting to look like I was not going to get a chance to meet this tree in person... ever. My luck changed a few weeks later. My friend Mark took us on a walk near a creek and forced us to keep our eyes on the canopy. We walked under a tree and he made sure to point out some compound leaves. With sunlight pouring through the canopy we were able to make out a set of leaves with a subtle haze around the leaf margins. We followed the leaves to the branches and down to the trunk. It was silvery. There we were standing under a large, healthy white walnut. The next day we stumbled across a few young saplings in some of our vegetation plots. All is not lost. I can't speak for the future of this species but I feel very lucky to have seen some healthy individuals. With a little bit of luck there may be hope of resistance to this deadly fungus. Only time will tell. 

Photo Credit: Dan Mullen (http://bit.ly/2br2F0Z)

Further Reading:
http://bit.ly/2b8GiMV

http://bit.ly/2aLUdMD

Invasion of the Earthworms

Photo by Rob Hille licensed under CC BY-SA 3.0

Photo by Rob Hille licensed under CC BY-SA 3.0

As an avid gardener, amateur fisherman, and a descendant of a long line of farmers, I have always held earthworms in high regard. These little ecosystem engineers are great for all of the above, right?

Not so fast! Things in life are never that simple! Let's start at the beginning. If you live in an area of North America where the glaciers once rested, there are no native terrestrial worms in your region. All of North America's native worm populations reside in the southeast and the Pacific northwest. All other worms species were wiped out by the glaciers. This means that, for millennia, northern North America's native ecosystems have evolved without the influence of any type of worms in the soil.

When Europeans settled the continent, they brought with them earthworms, specifically those known as night crawlers and red wigglers, in the ballasts of their ships. Since then, these worms have been spread all over the continent by a wide range of human activities like farming, composting, and fishing. Since their introduction, many forests have been invaded by these annelids and are now suffering heavily from earthworm activities.

As I said above, any areas that experienced glaciation have evolved without the influence of worms. Because of this, forests in these regions have built up a large, nutrient-rich, layer of decomposing organic material commonly referred to as "duff" or "humus." Native trees, shrubs, and forbs rely on this slowly decomposing organic material to grow. It is high in nutrients and holds onto moisture extremely well. When earthworms invade an area of a forest, they disrupt this rich, organic layer in very serious ways.

Worms break through the duff and and distribute it deeper into the soil where tree and forb species can no longer access it. Worms also pull down and speed up the decomposition of leaves and other plant materials that normally build up and slowly create this rich organic soil. Finally, earthworm castings or poop actually speed up runoff and soil erosion.

All of this leads to seriously negative impacts on native ecosystems. As leaves and other organic materials disappear into the soil at an alarming rate via earthworms, important habitat and food is lost for myriad forest floor organisms. In areas with high earthworm infestations, there is a significant lack of small invertebrates like copepods. The loss of these organisms has rippling effects throughout the ecosystem as well. It has been shown that, through these activities, earthworms are causing declines in salamander populations.

It gets worse too. As earthworms speed up the breakdown of the duff or humus, our native plant species are suffering. They have evolved to germinate and grow in these rich, organic soils. They rely on these soils for survival. As the nutrient rich layers get redistributed by earthworms, native plant and tree populations take a hit. Spring ephemerals have been hit the hardest by earthworm invasions for these reasons and more. There is very little recruitment and, in time, many species are lost. For small seeded species like orchids, earthworms can even consume seeds, which either destroys them outright or drags them down deeper into the soil where they cannot germinate. Earthworms have also been shown to upset the mycorrhizal fungi networks which most plant species cannot live without.

Top Left: Forest soil horizons without earthworms; Top Right: Forest soil mixed due to earthworms; Bottom Left: Forest understory diversity without earthworms; Bottom Right: Forest understory diversity with earthworms. Credits: [1]

So, what can we do about this? Well, for starters, avoid introducing new populations of earthworms to your neighborhood. If you are using earthworms as bait, do not dump them out onto land when you're done. If you must get rid of them, dump them into the water. Also, if you are using worm castings in your garden, it has been recommended that you freeze them for about a week to assure that no eggs or small worms survive the ride. If you are bringing new plants onto your property, make sure to check their root masses for any worm travelers. Remember, no worms are native if you live in a once glaciated region.

Sadly, there is not much we have come up with at this point for dealing with the current earthworm invasion. What few control methods have been developed are not practical on a large scale and can also be as upsetting to the native ecology as the earthworms. The best bet we have is to minimize the cases of new introductions. Earthworms are slow critters. They do not colonize new areas swiftly. In fact, studies have shown that it takes upwards of 100 years for earthworm populations to migrate 1/2 mile! Armed with new knowledge and a little attention to detail, we can at least slow their rampage.

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

The Lowly Lawn Orchid

A new year and a new orchid. It didn't take long for me to spot this little plant poking up between the succulent leaves of a potted aloe. My elation was short lived though. Alas, the sun was setting and I didn't have a flashlight or my camera. I was much luckier the next day. Actually, I shouldn't say lucky. This orchid isn't uncommon.

Meet the lawn orchid (Zeuxine strateumatica). Originally native to Asia, this species is expanding its range throughout many parts of the globe. Here in Florida, it was first discovered in 1936. There was a bit of confusion surrounding its origin on this continent, however, it is now believed that seeds arrived in a shipment of centipede-grass from China.

Since its premiere in Florida, the lawn orchid has since spread to Georgia, Alabama, and Texas. It seems to be quite tenacious, growing equally as well in lawns, floodplains, forests, meadows, and even sidewalk cracks! Despite this generalist habit, it does not seem to transplant well and is probably quite specific about its mycorrhizal partner. Much work needs to be done to sleuth out exactly why this little orchid has been able to spread so far outside of its native range.

Though small flies will visit the flowers, it is very likely that this orchid mostly self pollinates. It doesn't take long to flower and set seed. One plant can easily result in hundreds if not thousands of seedlings. After setting seed, the parent plant dies, however, it will often bud off new plantlets from its roots. Its ubiquitous nature can often stand in contrast to its ability to disappear for a series of time. Large stands that appear one year may not return for many years after. Still, in some areas this little orchid is abundant enough to be considered a nuisance.

Despite whatever feelings you may have towards this little plant, I nonetheless admire it. Its not often you find orchids so adaptable to a wide variety of conditions. At the very least it offers us insights into the success of plant invasions around the globe. And, in the end, its a nice looking little plant.

Further Reading: [1] [2]

Invasive Ants Destroy Plant Sex Lives

Photo by Lalithamba licensed under CC BY 2.0

Photo by Lalithamba licensed under CC BY 2.0

For all of the amazing symbioses ants and plants share, there is one thing ants seem to get in the way of... plant sex. That's right, plants have found a use for ants in pretty much every way except for when it comes to reproduction (with some exceptions of course). Ants being what they are, they can easily become a force to be reckoned with. For this reason, many plant species have co-opted ants as defense agents, luring them in with nectar-releasing glands, a resource that ants guard quite heavily. 

When it comes to flowering, however, ants can become a bit overbearing. Research done at the University of Toronto shows that the invasive European fire ant has a tendency to guard floral nectar so heavily that they chase away pollinators. By observing fire ants and bumblebees, they found that ants change bumblebee foraging behaviors. The fire ants often harassed and attacked bumblebees as they visited flowers, causing them to spend significantly less time at each flower, a fact that could very well result in reduced pollination for the plant in question. 

This reduction in pollination is made even more apparent for dioecious plants. Since ants are after nectar and not pollen, male flowers received more bumblebee visits than nectar-producing female flowers. This could become quite damaging in regions with heavy fire ant infestations. 

As it turns out, the ants don't even need to be present to ward off bumblebees. The mere scent of ants was enough to cause bumblebees to avoid flowers. They apparently associated the ant smell with being harassed and are more likely to not chance a visit. Of course, this study was performed on using an invasive ant species. Because so many plant species recruit ants for things like protection and seed dispersal, it is likely that under natural conditions, the benefit of associating with ants far outweighs any costs to reproductive fitness. More work is needed to see if other ant specie exhibit such aggressive behavior towards pollinators. 

Photo Credit: Lalithamba (https://www.flickr.com/people/45835639@N04)

Further Reading:

 http://www.researchgate.net/profile/James_Thomson13/publication/259319739_Ants_and_Ant_Scent_Reduce_Bumblebee_Pollination_of_Artificial_Flowers/links/554b8fd90cf21ed213595eff.pdf