Paleo Pinus

Photo Credit: Howard Falcon-Lang, Royal Holloway University of London

Photo Credit: Howard Falcon-Lang, Royal Holloway University of London

What you are looking at here is the oldest fossil evidence of the genus Pinus. Now, conifers have been around a long time. I mean really long. Recognizable members of this group first came onto the scene sometime during the late Triassic, some 235 million years ago. Today, one of the most species-rich genera of conifers are those in the genus Pinus. They dominate northern hemisphere forests and can be found growing in dry soils throughout the globe. For such a commonly encountered group, their origins have remained a bit of a mystery. 

The fossil was discovered in Nova Scotia, Canada. Unlike the rocky fossils we normally think of, this fossil was preserved as charcoal, undoubtedly thanks to a forest fire. The degree of preservation in this charcoal specimen is astounding and provides ample opportunity for close investigation. 

I mentioned that this fossil is old. Indeed it is. It dates back roughly 133 –140 million years, which places it in the lower Cretaceous. What is remarkable is that it predates the previous record holder by something like 11 million years. Even more remarkable, however, is what this tiny fossil can tell us about the ecology of Pinus at that time. 

Firstly, the leaf scars indicate that this tree had two needles per fascicle. This implies that the genus Pinus had already undergone quite the adaptive radiation by this time. If this is the case, it pushes back the clock on pine evolution even earlier. Another interesting feature are the presence of resin ducts. In extant species, these ducts secrete highly flammable terpenes, which would have potentially promoted fire. 

Species that exhibit this morphology today often utilize an ecology that promotes devastating crown fires that clear the land of competition for their seedlings. Although more evidence is needed to confirm this, it nonetheless suggests that such fire adaptations in pines were already shaping the landscape of the Cretaceous period. All in all, this fossil is a reminder that big things often come in small packages. 

Photo Credit: Howard Falcon-Lang, Royal Holloway University of London

Further Reading:

http://bit.ly/1QP85zm

A Flower Trapped in Amber

Photo by George Poinar [SOURCE]

Photo by George Poinar [SOURCE]

Thanks to a 30 year old collection of amber tucked away in the drawers of a museum, we now have the first fossil record of the asterid lineage. Discovered in the Dominican Republic back in 1986, this particular chunk of amber contains a tiny flower about a centimeter in length. The preservation is astounding, allowing researchers to accurately identify this as a member of the genus Strychnos.

The asterid lineage contains many orders that we would be familiar with including Gentianales, Lamiales and Solanales. It is highly derived yet poorly represented in the fossil record. Because of the challenges associated with accurately dating amber, scientists estimate that this flower is somewhere between 15 - 45 million years old. To put this in perspective, North and South America were not even connected at this point in time. What's more, the details preserved in these amber deposits are allowing researchers to piece together what the forest in this region would have looked like.

These fossils show that this forest "contained a distinct canopy layer composed of legumes such as algarroba (Hymenaea protera), cativo (Prioria spp.) and nazareno (Peltogyne spp.), with emergent trees like caoba (Swietenia; Meliaceae) extending through the canopy. The subcanopy and understory were represented by royal palms (Roystonea) and figs (Ficus; Moraceae). The shrub layer included other types of palms as well as acacias. Grasses like pega-lega (Pharus) and bambusoids (Alarista) colonized the forest floor. Orchids, bromeliads, ferns and vines covered the trees, and various lianas were also part of this tropical forest."

Pretty amazing for bits and pieces of solidified tree sap. This particular flower has been named Strychnos electri, a now extinct species. However, the morphological characteristics show that this particular genus as well as the asterid lineage were already well established at this time. Discoveries such as this are offering highly detailed windows into the past, which allows us to better understand flowering plant evolution and ecosystem change.

Photo Credit: George Poinar

Further Reading:
http://www.nature.com/articles/nplants20165

Why Trees Have Rings (and why they are so useful)

Dendrochronology is a field of study that focuses on tree rings. Though it may not be obvious, the amount of information we gain from looking at these rings is astounding. This research goes far deeper than simply finding out how old a tree was when it died. Dendrochronological data can be used to investigate paleoclimates, paleoecologies, and the archaeological dating of buildings and artwork. It is amazing how a practiced eye can look back in time. To date, we have an unbroken dendrochronological record for the northern hemisphere dating back some 12,000+ years!

All of this would not be possible if it were not for tree rings. But what exactly are they and how do they form? The answer is physiological. Essentially tree rings result from patterns in vascular tissues. Early in the spring, before the leaves start to grow, a layer of tissue just under the bark called the cambium begins to divide. In this cool, water-laden time of the growing season the vessels that are produced are large and less dense. This is the beginning of the spring or early wood. Although they are not as strong as vessels that are produced later in the season, they sure can move a lot of water. Things are a bit different for conifers. Because they do not produce vessel elements in their wood, this large cell growth is initiated instead by large amounts of a growth hormone called auxin that is produced by the new buds. This causes the cells of the early wood in conifers to grow large in a similar way to that of the hardwoods. 

As summer heats up, things start to change. The cambium starts producing smaller, thicker cells. The vessels that result from this are much stronger than those of the early wood. This late wood as it is called gives trees much of their rigidity and strength. Late wood is also resistant to what is called cavitation, a process in which water within the tree can literally vaporize, causing a damaging embolism during the hottest months of summer. In conifers, bud growth stops by mid to late summer and with it much of the production of auxin. This results in smaller vessels as well. 

In temperate regions, this cycle of growth occurs over the course of a growing season. As such, each ring demarcates a year in that trees life. Because so much of a trees growth is determined by environmental conditions, the size and shape of the rings can tell a lot about the conditions in which that tree was growing. That is why dendrochronology is such a useful tool. By looking at tree rings from all over the world, researchers can tell what was going on at that point in time. And, though it was long thought that this was a phenomenon restricted to seasonal forests, we are finding that even some tropical trees produce annual growth rings. This is especially true in regions that have a measurable dry season. It just goes to show you that data comes in many shapes, sizes, and forms.

LEARN MORE ABOUT DENDROCHRONOLOGY IN EPISODE 247 OF THE IN DEFENSE OF PLANTS PODCAST

Further Reading: [1] [2] [3]