The American Smoketree

Photo by Andrew Ward licensed under CC BY-NC 2.0

Photo by Andrew Ward licensed under CC BY-NC 2.0

I am a sucker for smoketrees (Cotinus spp.). These members of the cashew family (Anacardiaceae) are a common sight around my town and really put on a dazzling show from late spring through fall. When I finally got around to putting a name to these trees, I was a little bit bummed to realize that all of the specimens in town are representatives of the Eurasian species, Cotinus coggygria, but it didn’t take me long to find out that North America has it’s own fascinating representative of the genus.

The American smoketree (Cotinus obovatus) is not terribly common in the wild or cultivation. Today, it exhibits a suffuse distribution through parts of southern North America, with disjunct populations occurring along the Ozark Plateau of Arkansas and Missouri, the Arkansas River in eastern Oklahoma, the Cumberland Plateau in northeastern Alabama, Tennessee, and Georgia, and the Edwards Plateau in west-central Texas. The major habitat feature that unites these populations is soil. All of them are said to grow on rocky, calcareous soils prone to drought.

Photo by Megan Hansen licensed under CC BY-SA 2.0

Photo by Megan Hansen licensed under CC BY-SA 2.0

It is an interesting distribution to say the least. I haven’t found too much in the way of an explanation for why the American smoketree is limited to calcareous soils in the wild. Apparently it is fairly adaptable to different soil types in cultivation. Perhaps competition with other species limits this tree to harsh conditions. It isn’t a big species by most standards. The American smoketree generally produces multiple stems and only occasionally reaches heights of 30 feet (9 meters) or more in most circumstances. One phrase that gets repeated with some frequency is that the American smoketree likely represents a relictual species.

Though hard to prove without ample fossil evidence, it seems many experts believe that American smoketrees (and the genus Cotinus in general) were far more common and widespread in the past than they are today. Indeed, the fossil remains of a species named Cotinus cretaceus (sometimes C. cretacea) were found in Alaska and date back to the late Cretaceous. Given that the American smoketree’s closest living relatives are found throughout parts of Europe and Asia, such evidence suggests that this genus spread into North America during a period when land bridges connected the two continents and has since been reduced to scattered populations of this single North American species.

Photo by Andrey Zharkikh licensed under CC BY 2.0

Photo by Andrey Zharkikh licensed under CC BY 2.0

European colonization of North America did not help the American smoketree either. American smoketree sap can be processed into a yellow dye, which was highly coveted during the American Civil War. Its rot-resistant wood was also widely used for fence posts. At least one source I found indicated that the tree was cut to near extirpation in many areas for these reasons. Luckily today, with harvesting pressures largely a thing of the past, the American smoketree has rebounded enough that it is currently considered a species of least concern.

The American smoketree has also benefited from some minor popularity in cultivation. Like its Eurasian cousins, the appeal of this species comes from its colorful foliage, wonderfully flaky bark, and billowy inflorescences. Its egg-shaped leaves emerge in spring and are silky and pink. As spring gives way to summer, the leaves gradually turn a pleasing shade of blueish-green. Come fall, the leaves paint the landscape in bright red until they are shed. Late spring is generally the blooming time for American smoketree.

Photo by geneva_wirth licensed under CC BY-NC 2.0

Photo by geneva_wirth licensed under CC BY-NC 2.0

Photo by peganum licensed under CC BY-SA 2.0

Photo by peganum licensed under CC BY-SA 2.0

Its tiny, inconspicuous flowers are borne on large, branching panicles. Each panicle is covered in tiny hairs that apparently continue to grow well after the flowers have been pollinated. This is where the name smoketree comes from. From afar, a tree covered in panicles looks as if it is billowing dense clouds of smoke from its canopy. The whole spectacle is stunning to say the least and I just wish this species was more popular than its cousins.

All in all, the American smoketree is a truly interesting species. From its fractured distribution and curious history to its status as an obscure native tree in cultivation, there are a lot of reasons to love this species. Though related to plants like poison ivy (Toxicodendron spp.), smoketrees only rarely cause dermatitis in particularly susceptible individuals. I hope I get the chance to see an American smoketree in the wild some day.

Further Reading: [1] [2] [3] [4] [5]

Dwarf Sumac: North America's Rarest Rhus

James Henderson, Golden Delight Honey, Bugwood.org.

James Henderson, Golden Delight Honey, Bugwood.org.

In honor of my conversation with Anacardiaceae specialist, Dr. Susan Pell, I wanted to dedicate some time to looking at a member of this family that is in desperate need of more attention. I would like you to meet the dwarf sumac (Rhus michauxii). Found only in a few scattered locations throughout the Coastal Plain and Piedmont regions of southeastern North America, this small tree is growing increasingly rare.

Dwarf sumac is a small species, with most individuals maxing out around 1 - 3 feet (30.5 – 91 cm) in height. It produces compound fuzzy leaves with wonderfully serrated leaflets. It flowers throughout early and mid-summer, with individuals producing an upright inflorescence that is characteristic of what one might expect from the genus Rhus. Dwarf sumac is dioecious, meaning individual plants produce either male or female flowers. Also, like many of its cousins, dwarf sumac is highly clonal, sending out runners in all directions that grow into clones of the original. The end result of this habit is large populations comprised of a single genetic individual producing only one type of flower.

Current range of dwarf sumac (Rhus michauxii). Green indicates native presence in state, Yellow indicates present in county but rare, and Orange indicates historical occurrence that has since been extirpated. [SOURCE]

Current range of dwarf sumac (Rhus michauxii). Green indicates native presence in state, Yellow indicates present in county but rare, and Orange indicates historical occurrence that has since been extirpated. [SOURCE]

Research indicates that the pygmy sumac was likely never wide spread or common throughout its range. Its dependence on specific soil conditions (namely sandy or rocky, basic soils) and just the right amount of disturbance mean it is pretty picky as to where it can thrive. However, humans have pushed this species far beyond natural tolerances. A combination of agriculture, development, and fire sequestration have all but eliminated most of its historical occurrences.

Today, the remaining dwarf sumac populations are few and far between. Its habit of clonal spread complicates matters even more because remaining populations are largely comprised of clonal offshoots of single individuals that are either male or female, making sexual reproduction almost non-existent in most cases. Also, aside from outright destruction, a lack of fire has also been disastrous for the species. Dwarf sumac requires fairly open habitat to thrive and without regular fires, it is readily out-competed by surrounding vegetation.

A female infructescence. Photo by Alan Cressler.

A female infructescence. Photo by Alan Cressler

Luckily, dwarf sumac has gotten enough attention to earn it protected status as a federally listed endangered species. However, this doesn’t mean all is well in dwarf sumac land. Lack of funding and overall interest in this species means monitoring of existing populations is infrequent and often done on a volunteer basis. At least one study pointed out that some of the few remaining populations have only been monitored once, which means it is anyone’s guess as to their current status or whether they still exist at all. Some studies also indicate that dwarf sumac is capable of hybridizing with related species such as whinged sumac (Rhus copallinum).

Another complicating factor is that some populations occur in some surprisingly rundown places that can make conservation difficult. Because dwarf sumac relies on disturbance to keep competing vegetation at bay, some populations now exist along highway rights-of way, roadsides, and along the edges of artificially maintained clearings. While this is good news for current population numbers, ensuring that these populations are looked after and maintained is a difficult task when interests outside of conservation are involved.

Some of the best work being done to protect this species involves propagation and restoration. Though still limited in its scope and success, out-planting into new location in addition to augmenting existing populations offers hope of at least slowing dwarf sumac decline in the wild. Special attention has been given to planting genetically distinct male and female plants into existing clonal populations in hopes of increasing pollination and seed set. Though it is too early to count these few attempts as true successes, they do offer a glimmer of hope. Other conservation attempts involve protecting what little habitat remains for this species and encouraging better land management via prescribed burns and invasive species removal.

The future for dwarf sumac remains uncertain, but that doesn’t mean all hope is lost. With more attention and research, this species just may be saved from total destruction. The plight of species like the dwarf sumac serve as an important reminder of why both habitat conservation and restoration are so important for slowing biodiversity loss.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]James Henderson, Golden Delight Honey, Bugwood.org.

Southern Beeches and Biogeography

fagus01.jpg

If you spend any time learning about paleontology, you are bound to come across at least one reference to the southern beeches (genus Nothofagus). This remarkable and ecologically important group of trees can be found growing throughout the Southern Hemisphere at high latitudes in South America, Australia, New Zealand, New Guinea, and New Caledonia. Not only are they prominent players in the forests in which they grow, their fossil history has provided scientists with invaluable data on plate tectonics and biogeography.

Southern beeches may not be the tallest trees in any forest but that doesn’t mean they aren’t impressive. Numbering around 37 species, southern beeches have conquered a range of climate zones from temperate to tropical. Those living in lowland tropical forests tend to be evergreen, holding onto their leaves throughout the year whereas those living in temperate or montane habitats have evolved a deciduous habit. Some species of southern beech are also known for their longevity, with individuals estimated to be in excess of 500 years in age.

Nothofagus alpina

Nothofagus alpina

Anyone familiar with the true beeches (genus Fagus) will quickly recognize many similarities among these genera. From their toothy leaves to their triangular nuts, these trees are strikingly similar in appearance. Indeed, for much of their botanical history, southern beeches were included in the beech family (Fagaceae). However, recent molecular work has revealed that the southern beeches are genetically distinct enough to warrant their own family - Nothofagaceae.

The beech-like fruits of Nothofagus obliqua var. macrocarpa

The beech-like fruits of Nothofagus obliqua var. macrocarpa

As mentioned, the southern beeches, both extant and extinct, have been important players in our understanding of plate tectonics. Their modern day distribution throughout the Southern Hemisphere seems to hint at a more concentrated distribution at some point in the past. All of the continents and islands on which they are found today were once part of the supercontinent of Gondwana, which has led many to suggest that the southern beech family arose before Gondwana broke apart during the Jurassic, with ancestors of extant species riding the southern land masses to their modern day positions. Indeed, the paleo record seems to support this quite well.

Fall colors of Nothofagus cunninghamii.

Fall colors of Nothofagus cunninghamii.

The southern beeches have an impressive fossil record that dates back some 80 million years to the late Cretaceous. Their fossils have been found throughout many of the Southern Hemisphere continents including the now-frozen Antarctica. It would seem that the modern distribution of these trees is the result of plate tectonics rather than the movement of seeds across oceans. This is bolstered by lines of evidence such as seed dispersal. Southern beech nuts are fairly large and do not show any adaptations for long distance dispersal, leading many to suggest that they simply cannot ocean hop without serious help from other forms of life.

Nothofagus fusca

Nothofagus fusca

However, life is rarely so simple. Recent molecular work suggests that continental drift can’t explain the distribution of every southern beech species. By studying trees growing in New Zealand and comparing them to those growing in Australia and Tasmania, scientists have discovered that these lineages are far too young to have originated before the breakup of Gondwana. As such, the southern beeches of Austrialasia more likely got to their current distributions via long distance dispersal events. Exactly what allowed their seeds to cross the Tasman Sea is up for debate, but certainly not impossible given the expanse of time available for rare events to occur. Regardless of where anyone stands on this recent evidence, it nonetheless suggests that the biogeographic history of the southern beech family isn’t as clear cut as once thought.

Nothofagus fusca

Nothofagus fusca

Unfortunately, while southern beeches hold a prominent place in the minds of naturalists, the same cannot be said for the rest of the world. Little care has been given to their scientific and ecological importance and massive quantities of these trees are logged each and every year. Today it is estimated that 30% of all southern beech species are threatened with extinction. Luckily, large portions of the remaining populations for these trees are growing on protected lands. Also, because of their scientific importance, numerous southern beeches can be found growing in botanical collections and their seeds are well represented in seed banks. Still, southern beeches and the forests they comprise are worthy of respect and protection.

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3]

The Sinewy American Hornbeam

Photo by Richard Webb licensed by CC BY-SA 3.0

Photo by Richard Webb licensed by CC BY-SA 3.0

Winter is when I really start to notice trees. Admittedly, I am pretty poor when it comes to tree ID and taxonomy but there are a few species that really stand out. One of my all time favorite trees is Carpinus caroliniana.

Carpinus caroliniana goes by a handful of common names including ironwood, musclewood, and American hornbeam. All of these names have been applied to other trees so I'll stick with its scientific name. Finding C. caroliniana is rather easy. All you have to do is look for its unmistakable bark.

Photo by Rob Duval licensed by CC BY-SA 3.0

Photo by Rob Duval licensed by CC BY-SA 3.0

With smooth, sinewy striations and ridges, it is no wonder how this tree got the name "musclewood." The wood is extremely close-grained and is therefore very hard, earning it another nickname of "ironwood."They are generally small trees, rarely exceeding a few meters in height, though records have shown that some individuals can grow to upwards of 20 meters in rare circumstances. I hope that someday I will be able to meet one of these rare giants.

Carpinus caroliniana is also an indicator of fairly rich soils. Due to their high tolerance for shade, they are often a tree of the mixed hardwood understory. Their foliage resembles that of the family in which they belong, the birch family (Betulaceae).

Photo by Katja Schulz licensed by CC BY 2.0

Photo by Katja Schulz licensed by CC BY 2.0

The caterpillar of the io moth (Automeris io)

The caterpillar of the io moth (Automeris io)

An adult io moth (Automeris io). Photo by Andy Reago & Chrissy McClarren licensed by CC BY 2.0

An adult io moth (Automeris io). Photo by Andy Reago & Chrissy McClarren licensed by CC BY 2.0

A multitude of insect species utilize C. caroliniana as a larval food source including the famed io moth. In the spring, male and female catkins are born on the same tree and, after fertilization, they are replaced by interesting looking nutlets covered by leaf-like involucres. The seeds are an important food source for a variety of birds, mammals, and insects alike.

The male flowers of Carpinus caroliniana. Photo by Philip Bouchard licensed by CC BY-NC-ND 2.0

The male flowers of Carpinus caroliniana. Photo by Philip Bouchard licensed by CC BY-NC-ND 2.0

Carpinus caroliniana is a tree I could never get bored with. Not only does it have immense ecological value, it is aesthetically pleasing too. Its small size and shade tolerance also makes it a great landscape tree in areas too cramped for something larger. Why this species isn't more popular in native landscaping is beyond me.

Photo Credits: [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3]

Surprising Genetic Diversity in Old Growth Trees

Photo by S. Rae licensed by CC BY 2.0

Photo by S. Rae licensed by CC BY 2.0

Long-lived trees face a lot of challenges throughout their lives. Many trees can live for centuries, which can be a problem because plants cannot get up and move when conditions become unfavorable. This should equate to a slower rates of adaptation and evolution for long lived trees but that isn’t always the case. Many trees are often superbly capable of adapting to local conditions. Recently, a team of researchers from the University of British Columbia have provided some insights into the genetic mechanisms that may underpin such adaptive potential.

Genetic insights came from a species of conifer many will be familiar with - the Sitka spruce (Picea sitchensis). Researchers were interested in these trees because they live for a long time (upwards of 500 years or more) and can grow to heights of over 70 meters (230 ft.). They wanted to understand how genetic mutations work in trees like the Sitka spruce because plants are doing things a bit different than animals in that department.

Plants are modular organisms, meaning they grow by producing multiple copies of discrete units. This equates to a branching structure whose overall shape is in large part determined by environmental influences. It also means that when genetic mutations occur in one branch, they can be carried on throughout the growth of those tissues independent of what is going on throughout the rest of the plant. This means that older trees can often accumulate a surprising amount of genetic diversity throughout the entire body of the plant.

Photo by Brandon Kuschel licensed by Creative Commons Attribution 3.0 Unported

Photo by Brandon Kuschel licensed by Creative Commons Attribution 3.0 Unported

When researchers sampled the DNA of tissues from the trunks and the needles of tall, old growth Sitka spruce, they were shocked by what they had found. From the base of the tree to the needles in the canopy, an old growth Sitka spruce can show as much as 100,000 genetic differences. That is a lot of genetic diversity for a single organism. Though plenty of other trees have been found to exhibit varying levels of genetic differences within individuals, this is one of the highest mutation rates ever found in a single eukaryotic organism. This could also explain why such long-lived organisms can survive in a changing world for their entire lives.

Now, it is important to note that many mutations are likely either neutral or potentially harmful. Also, the rates of mutation may differ depending on where you look on this tree. For instance, needles at the top of a Sitka spruce are going to be exposed to far more gene-altering UV radiation than bark tissues near the base. Still, over the lifetime of a single tree, rare beneficial mutations can and do accumulate. Imagine a scenario in which one branch mutation results in needles that are more resistant to say an insect pest. Those needles could hypothetically receive less damage than needles elsewhere on the tree. This odd form of selection is occurring within the lifetime of that tree and may even have implications for the future offspring of that tree thanks again to the quirks of how tree reproductive cells develop.

Many trees also do not have segregated germlines. What this means is that unlike animals whose reproductive cells develop from separate cell lineages than the rest of their body cells, the reproductive cells of trees develop from somatic cells, which are the same cells that form stems, leaves, and branches. This means that if a mutation occurs on the germline of a branch that eventually goes on to produce cones, these mutations can be passed on in the seeds of those cones. This obviously needs a lot of evidence to substantiate but now that a mechanism is in place, we know where and what to look for.

Photo Credits: [1] [2]

Further Reading: [1] [2]

Meeting One of North America's Rarest Oaks

IMG_3590.jpg

A post (and photos) by Robbie Q. Telfer

“Every species is a masterpiece, exquisitely adapted to the particular environment in which it has survived.”

-- E.O. mothereffin Wilson

One of the perks of working at The Morton Arboretum is you get to see cool lectures on tree science for free. At one such program, Dr. Mary Ashley from the University of Illinois at Chicago was sharing her research on oak pollen and how far it can travel to fertilize female flowers (far). She looked at not only trees in the Chicago region, but also oaks off the coast of California and in the Chihuahuan Desert of west Texas, as well as throughout Mexico. That latter oak was a shrubby species called Quercus hinckleyi or Hinckley oak. It is able to spread pollen over far distances as well, despite the fact that there are only 123 individuals known to be left. IUCN lists it as Critically Endangered.

As she was telling us this, it occured to me that I would be in West Texas soon to visit my sister-in-law, so afterwards I approached Dr. Ashley and asked if there was any way I could have the coordinates of Q. hinckleyi so that I could visit it, take a selfie, and luxuriate in the presence of something so rare. I made it clear to her that I understood just how important it was to keep this information a secret, because the last thing this relict needs is to be uprooted by poachers. Which I wish wasn’t a concern, but it is.

Dr. Ashley put me in touch with her colleague Janet Backs who graciously shared the coordinates. I could see the plants from Google maps satellite view. There they were. I probably waved at the computer screen sheepishly.

IMG_1001.jpeg

As I waited for my time to bask in the majesty of botanical greatness, I consulted my copy of Oaks of North America (1985) by Howard Miller and Samuel Lamb to see what the entry for hinckleyi said.

IMG_1002.jpeg
image_123986672.JPG

Notably, it mentions that “This is another of the oaks with no specific value, except as a curiosity.” More on that later.

After much anticipation, the time was upon us. I decided to drive out to the plants in my rental first thing in the morning after getting to Texas. The Chihuahuan Desert is an astounding place that my Illinoisan eyes weren’t altogether prepared for. It is perhaps the most biodiverse desert in the world, and compared to our prairies, woodlands, and wetlands, it feels like a different planet. Some of the cooler plants I got to see were tree cholla (Cholla sp.), Havard’s century plant (Agave havardiana), Wright’s cliffbrake (Pellaea wrightiana), and little buckthorn (Condalia ericoides). And also a family of introduced aoudads with TWO adorable babies. I also got to see my first javelina (as roadkill) and all kinds of birds new to me.

Tree cholla (Cholla sp.)

Tree cholla (Cholla sp.)

Havard’s century plant (Agave havardiana)

Havard’s century plant (Agave havardiana)

Wright’s cliffbrake (Pellaea wrightiana)

Wright’s cliffbrake (Pellaea wrightiana)

Little buckthorn (Condalia ericoides)

Little buckthorn (Condalia ericoides)

Aoudads in the distance.

Aoudads in the distance.

Finally I got to the coordinates - luckily google preloaded the directions on my phone because there was absolutely no cell service where I was. I parked and walked to the plants. And lo, I present to you, Quercus hinckleyi.

IMG_3585.jpg
IMG_3590.jpg

It’s in the white oak family, which I guess means more than just “has round leaves.” These leaves look like holly, and even the shed ones on the ground still had some stabbiness left in them. It’s quite diminutive - certainly compared to any oak I’ve ever seen and even by shrub standards. I’d pinch its cheeks if that wouldn’t make my fingers bleed. After getting the pics I needed and doing the atheist’s version of saying a prayer over it, I floated back to my car like a cartoon cat in love.

The rest of the trip was great and I can’t wait to go back.

Since returning, I have shown several of my non-plant nerd friends the pics of hinckleyi and they seem politely impressed but not, like, actually impressed. This is totally understandable! If your experience with plants is on the order of what looks best in a planting or what tastes best in your tummy, this shrub is not for you. After all “it’s only value is as a curiosity.”

I don’t know about that. I feel like it’s value is greater than that for humans - it’s a window into the North American continent before the climate shifted 10,000 years ago, it’s an individual member of our vast botanical heritage, it is unique, it is adorbs, and it helped Dr. Ashley, and therefore us, understand more things about the movement of oak pollen.

But beyond what it does for US, what if, and hear me out, what if it has a right to existence on its own, without being displaced by pipelines or aoudads or poachers? It is a member of its ecological community, and just like I feel a loss when a member of my community passes, we don’t have the language to articulate what is felt when a member of an ecosystem winks out forever.

Janet Backs told me that she heard of someone who was trying to poach acorns from a subpopulation of hinckleyi and that the landowners where that shrub is actually chased those folks for miles and miles down the road. I love that. I wish every single threatened species/subpopulation had someone who understood its value beyond what it does for humans enough to chase people, possibly with a gun, for miles and miles.

I have had a paltry bucket list for most of my adult life - boring stuff like meeting my heroes or getting to a 7th bowl of never-ending-pasta. But despite their apparent lack of reverence for Q. hinckleyi I think a pretty good guiding list for me would be to visit each of the 77 oaks of North America in their native habitats. I know they won’t all be as special as this experience, but what better way to visit the corners of this continent and its myriad ecological communities, than by visiting each of its oaks? I currently can’t think of any, and would invite anyone to, if not fund me, join me.

The Celery-Topped Conifers

Photo by RTBG licensed under CC BY-NC-SA 2.0

Photo by RTBG licensed under CC BY-NC-SA 2.0

I am only just starting to fully appreciate the diversity in form and habit exhibited by the gymnosperm lineages alive today. What I once thought of as a unidimensional group of plants is proving to be wonderfully diverse, despite being overshadowed by the angiosperms. For instance, imagine my surprise when I first laid eyes on a member of the genus Phyllocladus.

At first glance, these weird conifers look more like a broad-leaf angiosperm. This similarity is superficial, of course. Before we get to why they look the way they do, it is worth considering this group from a as a whole. The genus Phyllocladus comprises roughly 5 species spread out among New Zealand, Tasmania, and Malesia. They are somewhat variable in form but usually settle out somewhere between a good sized shrub and a medium sized tree. Where exactly this genus of oddball gymnosperms fits on the tree of life is subject to some debate.

Phyllocladus trichomanoides licensed under public domain

Phyllocladus trichomanoides licensed under public domain

For many years after its initial description, Phyllocladus was placed in a family of its own - Phyllocladaceae. Subsequent molecular work has only managed to add to the confusion. Despite its unique morphological characteristics, some authors feel this genus fits nicely into the family Podocarpaceae. At least one other study suggests that it doesn’t belong in Podocarpaceae but rather is situated as sister to the family. By the looks of it, this will not be cleared up any time soon. So, for now, let’s focus in on why these plants are so strange.

For starters we have the “leaves.” I place the word ‘leaves’ in quotes because they are not true leaves. The correct term for these structures are phylloclades (hence the generic name). A phylloclade is a flattened projection of a branch that takes on the form and function of a leaf. What we know of as leaves have been greatly reduced in the genus Phyllocladus. If you want to see them, you must look closely at the tips of the phylloclades. Early on in their development, the leaves exist as tiny brown scales. These scales are gradually lost over time as they serve no function for the plant.

Phyllocladus alpinus. Photo by MurielBendel licensed under CC BY-SA 4.0

Phyllocladus alpinus. Photo by MurielBendel licensed under CC BY-SA 4.0

Though no one has tested this directly (that I am aware of), the evolution of phylloclades over leaves likely has to do with energy conservation in one form or another. Why produce stems and leaves when you can co-opt stem-like structures to do the work for you? Oddly enough, some suggest that to consider them stems in the truest sense of the word is erroneous. Morphologically speaking, they share traits that are intermediate between branches and stems. However, I am going to need to do more homework before I feel comfortable elaborating on this point.

Only when it comes time for reproduction does their place among the gymnosperms become readily apparent, that is before the ovules are fertilized. All members of the genus Phyllocladus produce cones. Male cones are tiny, cylindrical structures located at the ends of their side branches whereas female cones are clustered into groups along the axils or margins of the phylloclades. Once fertilized, however, these plants offer another point of confusion for the casual observer.

Phyllocladus is yet another genus of conifers that has converged on a fruit-like seed dispersal strategy. As the seed cones mature, the scales gradually swell and become berry-like. Poking out of the bright red and/or white aril is a single seed. These fleshy arils function in a similar way to fruit in that they attract birds, which then consume them, dispersing the seeds later on in their feces.

Another intriguing aspect of their morphology occurs below ground. The roots of this genus form nodules, which provide a home for bacteria that specializing in fixing atmospheric nitrogen. In return for a home and some carbohydrates from photosynthesis, these bacteria pay these trees with nitrogen that would otherwise be unavailable. Pretty remarkable stuff for a such an esoteric group of conifers!

Photo Credits: [1] [2]

Further Reading: [1] [2] [3] [4] [5]

The Creeping Strawberry Pine

Photo by Tindo2 - Tim Rudman licensed under CC BY-NC 2.0

Photo by Tindo2 - Tim Rudman licensed under CC BY-NC 2.0

With its small, creeping habit and bright red, fleshy female cones, it is easy to see how Microcachrys tetragona earned its common name “creeping strawberry pine.” This miniature conifer is as adorable as it is interesting. With a fossil history that spans 66 million years of Earth’s history, it also has a lot to teach us about biogeography.

Today, the creeping strawberry pine can only be found growing naturally in western Tasmania. It is an alpine species, growing best in what is commonly referred to as alpine dwarf scrubland, above 1000 m (3280 ft) in elevation. Like the rest of the plants in such habitats, the creeping strawberry pine does not grow very tall at all. Instead, it creeps along the ground with its prostrate branches that barely extend more than 30 cm (0.9 ft) above the soil. This, of course, is likely an adaptation to its alpine environment. Plants that grow too tall frequently get knocked back by brutal winds and freezing temperatures among other things.

The creeping strawberry pine is not a member of the pine family (Pinaceae) but rather the podocarp family (Podocarpaceae). This family is interesting for a lot of reasons but one of the coolest is the fact that they are charismatic representatives of the so-called Antarctic flora. Along with a handful of other plant lineages, it is thought that Podocarpaceae arose during a time when most of the southern continents were combined into a supercontinent called Gondwana. Subsequent tectonic drift has seen the surviving members of this flora largely divided among the continents of the Southern Hemisphere. By combining current day distributions with fossil evidence, researchers are able to use families such as Podocarpaceae to tell a clearer picture of the history of life on Earth.

What is remarkable is that among the various podocarps, the genus Microcachrys produces pollen with a unique morphology. When researchers look at pollen under the microscope, whether extant or fossilized, they can say with certainty if it belongs to a Microcachrys or not. The picture we get from fossil evidence paints an interesting story for Microcachrys diversity compared to what we see today. It turns out, Microcachrys endemic status is a more recent occurrence.

This distinctive, small, trisaccate pollen grain is typical of what you find with Microcachrys whereas all other podocarps produce bisaccate pollen. J.I. Raine, D.C. Mildenhall, E.M. Kennedy (2011). New Zealand fossil spores and pollen: an illustrat…

This distinctive, small, trisaccate pollen grain is typical of what you find with Microcachrys whereas all other podocarps produce bisaccate pollen. J.I. Raine, D.C. Mildenhall, E.M. Kennedy (2011). New Zealand fossil spores and pollen: an illustrated catalogue. 4th edition. GNS Science miscellaneous series no. 4. http://data.gns.cri.nz/sporepollen/index.htm

The creeping strawberry pine is what we call a paleoendemic, meaning it belongs to a lineage that was once far more widespread but today exists in a relatively small geographic location. Fossilized pollen from Microcachrys has been found across the Southern Hemisphere, from South America, India, southern Africa, and even Antarctica. It would appear that as the continents continued to separate and environmental conditions changed, the mountains of Tasmania offered a final refuge for the sole remaining species in this lineage.

Another reason this tiny conifer is so charming are its fruit-like female cones. As they mature, the scales around the cone swell and become fleshy. Over time, they start to resemble a strawberry more than anything a gymnosperm would produce. This is yet another case of convergent evolution on a seed dispersal mechanism among a gymnosperm lineage. Birds are thought to be the main seed dispersers of the creeping strawberry pine and those bright red cones certainly have what it takes to catch the eye of a hungry bird. It must be working well for it too. Despite how narrow its range is from a global perspective, the creeping strawberry pine is said to be locally abundant and does not face the same conservation issues that many other members of its family currently face. Also, its unique appearance has made it something of a horticultural curiosity, especially among those who like to dabble in rock gardening.

Mature female cones look more like angiosperm fruit than a conifer cone. Photo by Mnyberg licensed under CC BY-SA 4.0

Mature female cones look more like angiosperm fruit than a conifer cone. Photo by Mnyberg licensed under CC BY-SA 4.0

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

Meet the She-Oaks

Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

No, what you are looking at here is not a type of conifer. Nor is it an oak. This odd plant belongs in its own family - Casuarinaceae. Despite their gymnosperm appearance, this is in fact a family of flowering plants. Though the name “she-oak” does hint at their larger position within the order Fagales, it was actually given to these trees in reference to the density of their wood in comparison to more commonly harvested oak species. Other common names for trees in this group include ironwood, bull-oak, beefwood.

As a whole this family sorts out as sister to Myricaceae in the order Fagales. It' is comprised of 4 genera (Allocasuarina, Casuarina, Ceuthostoma, and Gymnostoma) and roughly 91 species spread among Australia, Malaysia, and much of Polynesia. It is extremely difficult to make generalizations across so many species but there is one aspect of this family that makes them stand out - their appearance.

Gymnostoma sp. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Gymnostoma sp. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Gymnostoma nobile in Sarawak, Malaysia. Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Gymnostoma nobile in Sarawak, Malaysia. Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Without close inspection, one could be forgiven for thinking the various Casuarinaceae were species of conifer. For starters, their leaves have been reduced to tiny whorls surrounding their photosynthetic stems. The stems themselves have taken up the role of photosynthetic organs, which is one of the reasons this family is known for its drought tolerance. Reducing the surface area available for gas exchange helps to reduce water loss in the process. The stems themselves are arranged with whorls around the branches, giving them a rather bunched appearance. The photosynthetic branches are sometimes referred to as being ‘equisetiform’ as they superficially resemble the stems of Equisetum. They do not shed their photosynthetic branches and are therefore evergreen.

As mentioned, these are flowering plants. Their flowers themselves are aggregated into spike-like inflorescences near the tips of branches. Clusters of male flowers resemble catkin-like strobili and are often brightly colored. Female flowers are clustered into a more ovoid shape, with long, filamentous pistils sticking out like fiery, red pompoms. After fertilization, bracts at the base of the female flowers swell and the whole inflorescence starts to look more like some sort of a conifer cone than anything floral. This may have to do with the fact that, like conifers, the various Casuarinaceae are wind pollinated. Therefore, their reproductive structures have had to deal with similar selective forces related to optimizing pollen dispersal and capture.

Casuarina equisetifolia with catkin-like male flowers and smaller, red female flowers. Photo by B.navez licensed under the GNU Free Documentation License.

Casuarina equisetifolia with catkin-like male flowers and smaller, red female flowers. Photo by B.navez licensed under the GNU Free Documentation License.

Allocasuarina distyla female flowers and infructescence. Photo by John Tann licensed under CC BY 2.0

Allocasuarina distyla female flowers and infructescence. Photo by John Tann licensed under CC BY 2.0

Another interesting trait common to Casuarinaceae is the ability to fix nitrogen. The plants themselves don’t do the fixing, rather they form specialized nodules on their roots that house nitrogen-fixing bacteria. Unlike perennial legumes that regrow their nodules year after year, the members of Casuarinaceae hold onto their nodules, which can grow into impressive structures over time. This ability to house nitrogen-fixing bacteria is also shared with other members of the order Fagales, including members of Betulaceae and Myricaceae.

Thanks to the fact that they can tolerate drought, fix nitrogen, and have high timber value, species of Casuarinaceae have been introduced far outside of their native ranges. This has created yet another invasive species issue. Various Casuarinaceae have become serious pests in places like Central and South America, the Carribbean, and the Middle East. Control of such hardy plants can be extremely difficult once they reach a critical mass that maintains them on the landscape. Keep you eye out for these species. Not only are they interesting in their own right, knowing them can help you better understand their role in ecosystems both native and not.

Allocasuarina decaisneana (Desert Oaks), Central Australia. Photo by Cgoodwin licensed under the GNU Free Documentation License.

Allocasuarina decaisneana (Desert Oaks), Central Australia. Photo by Cgoodwin licensed under the GNU Free Documentation License.

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3] [4]

A Relictual Palm in the American Southwest

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

Scattered throughout hidden oases nestled in the southwest corner of North America grows a glorious species of palm known to science as Washingtonia filifera. This charismatic tree goes by a handful of common names such as the desert fan palm, petticoat palm, and California fan palm. No matter what you call it, there is no denying that this palm is both unique and important to this arid region.

Populations of the desert fan palm are few and far between, occurring in a few scattered locations throughout the Colorado and Mojave Deserts. This palm can’t grow just anywhere in these deserts either. Instead, its need for water restricts it to small oases where springs, streams, or a perched water table can keep them alive.

Fossil evidence from Wyoming suggests that the restricted distribution of this palm is a relatively recent occurrence. Though not without plenty of debate, our current understanding of the desert fan palm is that it could once be found growing throughout a significant portion of western North America but progressive drying has seen its numbers dwindle to the small pockets of trees we know today.

The good news is that, despite being on conservation lists for its rarity, the desert fan palm appears to be expanding its range ever so slightly. One major component of this range expansion has to do with human activity. The desert fan palm makes a gorgeous specimen plant for anyone looking to add a tropical feel to their landscape. As such, it has been used in plantings far outside of its current range. Some reports suggest that it is even becoming naturalized in places like Death Valley, Sonoran Mexico, and even as far away as Florida and Hawai’i.

Photo by Forest & Kim Starr licensed under CC BY 3.0

Photo by Forest & Kim Starr licensed under CC BY 3.0

Other aspects contributing to its recent range expansion are also attributable to human activity, though indirectly. For one, with human settlement comes agriculture, and with agriculture comes wells and other forms of irrigation. It is likely that the seeds of the desert fan palm can now find suitably wet areas for germination where they simply couldn’t before. Also, humans have done a great job at providing habitat for potential seed dispersers, especially in the form of coyotes and fruit-eating birds.

It’s not just an increase in seed dispersers that may be helping the desert fan palm. Pollinators may be playing a role in its expansion as well, though in a way that may seem a bit counterintuitive. With humans comes a whole slew of new plants in the area. This greatly adds to the floral resources available for insect pollinators like bees.

Photo by docentjoyce licensed under CC BY 2.0

Photo by docentjoyce licensed under CC BY 2.0

Historically it has been noted that bees, especially carpenter bees, tend to be rather aggressive with palm inflorescences as they gather pollen, which may actually reduce pollination success. It is possible that with so many new pollen sources on the landscape, carpenter bees are visiting palm flowers less often, which actually increases the amount of pollen available for fertilizing palm ovules. This means that the palms could be setting more seed than ever before. Far more work will be needed before this mechanism can be confirmed.

Aside from its unique distribution, the desert fan palm has an amazing ecology. Capable of reaching heights of 80 ft. (25 m) or more and decked out in a skirt of dead fronds, the desert fan palm is a colossus in the context of such arid landscapes. It goes without saying that such massive trees living in desert environments are going to attract their fair share of attention. The thick skirt of dead leaves that cloaks their trunks serve as vital refuges for everything from bats and birds, to reptiles and countless of insects. Fibers from its leaves are often used to build nests and line dens.

And don’t forget the fruit! Desert fan palms can produce copious amount of hard fruits in good years. These fruits go on to feed many animals. Coupled with the fact that the desert fan palm always grows near a water source and you can begin to see why these palms are a cornerstone of desert oases. There has been some concern over the introduction of an invasive red palm weevil (Rhynchophorus ferrugineus), however, researchers were able to demonstrate that the desert fan palm has a trick up its sleeve (leaf skirt?) for dealing with these pests.

It turns out that desert fan palms are able to kill off any of these weevils as they try to burrow into its trunk. The desert fan palm secretes a gummy resin into damaged areas, which effectively dissuaded most adults and killed off developing beetle larvae. For now it seems that resistance is enough to protect this palm from this weevil scourge.

It is safe to say that regardless of its limited distribution, the desert fan palm is one tough plant. Its towering trunks and large, fan-like leaves stand as a testament to the wonderful ways in which natural selection shapes organisms. It is a survivor and one that has benefited a bit from our obsession with cultivating palms.

Photo Credits: [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5]


The Only True Cedars

Cedrus deodara. Photo by PabloEvans licensed under CC BY 2.0

Cedrus deodara. Photo by PabloEvans licensed under CC BY 2.0

The only true cedars on this planet can be found growing throughout mountainous regions of the western Himalayas and Mediterranean. All others are cedars by name only. The so-called “cedars” we encounter here in North America are not even in the same family as the true cedars. Instead, they belong to the Cypress family (Cupressaceae). The true cedars all belong to the genus Cedrus and are members of the family Pinaceae. They are remarkable trees with tons of ecological and cultural value.

J. White,1803-1824.

J. White,1803-1824.

The true cedars are stunning trees to say the least. They regularly reach heights of 100 ft. (30 m.) or more and can live for thousands of years. Cedars exhibit a dimorphic branching structure, with long shoots forming branches and smaller shoots carrying most of the needle load. The needles themselves are borne in dense, spiral clusters, giving the branches a rather aesthetic appearance. Each needle produces layers of wax, which vary in thickness depending on how exposed the tree is growing. This waxy layer helps protect the tree from sunburn and desiccation.

Cedrus libani. Photo by Zeynel Cebeci licensed under CC BY-SA 4.0

Cedrus libani. Photo by Zeynel Cebeci licensed under CC BY-SA 4.0

Cedrus libani. Photo by Leonid Mamchenkov licensed under CC BY 2.0

Cedrus libani. Photo by Leonid Mamchenkov licensed under CC BY 2.0

One of the easiest ways to identify a cedar is by checking out its cones. All members of the genus Cedrus produce upright, barrel-shaped cones. Male cones are smaller and don’t stay on the tree for very long. Female cones, on the other hand, are quite large and stay on the tree until the seeds are ripe. Upon ripening, the entire female cone disintegrates, releasing the seeds held within. Each seed comes complete with blisters full of distasteful resin, which is thought to deter seed predators.

Male cones of Cedrus atlantica. Photo by Meneerke bloem licensed under CC BY-SA 3.0

Male cones of Cedrus atlantica. Photo by Meneerke bloem licensed under CC BY-SA 3.0

Female Cedrus cones. Photo by Zeynel Cebeci licensed under CC BY-SA 4.0

Female Cedrus cones. Photo by Zeynel Cebeci licensed under CC BY-SA 4.0

In total, there are only four recognized species of cedar - the Atlas cedar (Cedrus atlantica), the Cyprus cedar (C. brevifolia), the deodar cedar (C. deodara), and the Lebanon cedar (C. libani). I have heard arguments that C. brevifolia is no more than a variant of C. libani but I have yet to come across any source that can say this for certain. Much more work is needed to assess the genetic structure of these species. Even their place within Pinaceae is up for debate. Historically it seems that Cedrus has been allied with the firs (genus Abies), however, work done in the early 2000’s suggests that Cedrus may actually be sister to all other Pinaceae. We need more data before anything can be said with certainty.

Regardless, two of these cedars - C. atlantica & C. libani - are threatened with extinction. Centuries of over-harvesting, over-grazing, and unsustainable fire regimes have taken their toll on wild populations. Much of what remains is not considered old growth. Gone is the heyday of giant cedar forests. Luckily, many populations are now located in protected areas and reforestation efforts are being put into place throughout their range. Still, the ever present threat of climate change is causing massive pest outbreaks in these forests. The future for these trees hangs in the balance.

Photo Credit: Wikimedia Commons

Further Reading: [1] [2] [3]

Meet Pokeweed's Tree-Like Cousin

Photo by Roberto Fiadone licensed under CC BY-SA 4.0

Photo by Roberto Fiadone licensed under CC BY-SA 4.0

There is more than one way to build a tree. For that reason and more, “tree” is not a taxonomic designation. Arborescence has evolved independently throughout the botanical world and many herbaceous plants have tree-like relatives. I was shocked to learn recently of a plant native to the Pampa region of South America commonly referred to as ombú. At first glance it looks like some sort of fig, with its smooth bark and sinuous, buttressed roots. Deeper investigation revealed that this was not a fig. Ombú is actually an arborescent cousin of pokeweed!

Photo by Dick Culbert licensed under CC BY 2.0

Photo by Dick Culbert licensed under CC BY 2.0

The scientific name of ombú is Phytolacca dioica. As its specific epithet suggests, plants are dioecious meaning individuals are either male or female. Unlike its smaller, herbaceous cousins, ombú is an evergreen perennial. Because they can grow all year, these plants can reach bewildering proportions. Heights upwards of 60 ft. (18 m.) are not unheard of and the crowns of more robust specimens can easily attain diameters of 40 to 50 ft. (12 - 18 m.)! What makes such sizes all the more impressive is the way in which ombú is able to achieve such growth.

Photo by Lanntaron licensed under CC BY-SA 3.0

Photo by Lanntaron licensed under CC BY-SA 3.0

Ombú is thought to have evolved from an herbaceous ancestor. Cut into the trunk of one of these trees and you will see that this phylogenetic history has left its mark. Ombú do not produce what we think of as wood. Instead, much of the support for branches and stems comes from turgor pressure. Also, the way in which these trees grow is not akin to what you would see from something like an oak or a maple. Whereas woody trees undergo secondary growth in which the cambium layer differentiates into xylem and phloem, thus thickening stems and roots, ombú exhibits a unique form of stem and root thickening called “anomalous secondary thickening.”

Essentially what this means is that instead of a single layer of cambium forming xylem and phloem, ombú cambium exhibits unidirectional thickening of the cambium layer. There are a lot of nitty gritty details to this kind of growth and I must admit I don’t have a firm grasp on the mechanics of it all. The point of the matter is that anomalous secondary thickening does not produce wood as we know it and instead leads to rapid growth of weak and spongy tissues. This is why turgor pressure is so important to the structural integrity of these trees. It has been estimated that the trunk and branches of an ombú is 80% water.

A cross section of an ombú limb showing harder xylem tissues separated by spongy parenchyma that has since disintegrated. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

A cross section of an ombú limb showing harder xylem tissues separated by spongy parenchyma that has since disintegrated. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Like all members of this genus, ombú is plenty toxic. Despite this, ombú appears to have been embraced and is widely planted as a specimen tree in parks, along sidewalks, and in gardens in South America and elswhere. In fact, it is so widely planted in Africa that some consider it to be a growing invasive issue. All in all I was shocked to learn of this species. It caused me to rethink some of the assumptions I hold onto with some lineages I only know from temperate regions. It is amazing what natural selection has done to this genus and I am excited to explore more arborescent anomalies from largely herbaceous groups.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3]

A Very Strange Maple

Photo by Abrahami licensed under CC BY-SA 2.5

Photo by Abrahami licensed under CC BY-SA 2.5

I love being humbled by plant ID. Confusion usually means I am going to end up learning something new. This happened quite recently during a trip through The Morton Arboretum. Admittedly trees are not my forte but I had spotted something that seemed off and needed further inspection. I was greeted by a small tree with leaves that screamed "birch family" (Betulaceae) yet they were opposite. Members of the birch family should have alternately arranged leaves. What the heck was I looking at?

It didn't take long for me to find the ID tag. As a plant obsessed person, the information on the tag gave me quite the thrill. What I was looking at was possible the strangest maple on the planet. This, my friends, was my first introduction to Acer carpinifolium a.k.a the hornbeam maple.

Photo (c)2006 Derek Ramsey (Ram-Man) licensed under CC BY-SA 2.5

Photo (c)2006 Derek Ramsey (Ram-Man) licensed under CC BY-SA 2.5

The hornbeam maple is endemic to Japan where it can be found growing in mountainous woodlands and alongside streams. Maxing out around 30 feet (9 m) in height, the hornbeam maple is by no means a large tree. It would appear that it has a similar place in its native ecology as other smaller understory maples do here in North America. It blooms in spring and its fruits are the typical samaras one comes to expect from the genus.

It probably goes without saying that the thing I find most fascinating about the hornbeam maple are its leaves. As both its common and scientific names tell you, they more closely resemble that of a hornbeam (Carpinus spp.) than a maple. Unlike the lobed, palmately veined leaves of its cousins, the hornbeam maple produces simple, unlobed leaves with pinnate venation and serrated margins. They challenge everything I have come to expect out of a maple. Indeed, the hornbeam maple is one of only a handful of species in the genus Acer that break the mold for leaf shape. However, compared to the rest, I think its safe to say that the hornbeam maple is the most aberrant of them all. 

Photo by Qwert1234 licensed under CC BY-SA 3.0

Photo by Qwert1234 licensed under CC BY-SA 3.0

Not a lot of phylogenetic work has been done on the relationship between the hornbeam maple and the rest of its Acer cousins. At least one study suggests that it is most closely related to the mountain maple of neartheastern North America. More scrutiny will be needed before anyone can make this claim with certainty. Still, from an anecdotal standpoint, it seems like a reasonable leap to make considering just how shallow the lobes are on mountain maple leaves.

Regardless of who it is related to, running into this tree was truly a thrilling experience. I love it when species challenge long held expectations of large groups of plants. Hornbeam maple has gone from a place of complete mystery to me to being one of my favorite maples of all time. I hope you too will get a chance to meet this species if you haven't already!

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

 

Maples, Epiphytes, and a Canopy Full of Goodies

IMG_0090.jpg

The forests of the Pacific Northwest are known for the grandeur. This region is home to one of the greatest temperate rainforests in the world. A hiker is both dwarfed and enveloped by greenery as soon as they hit the trail. One aspect of these forests that is readily apparent are the carpets of epiphytes that drape limbs and branches all the way up into the canopy. Their arboreal lifestyle is made possible by a combination of mild winters and plenty of precipitation. 

We are frequently taught that the relationship between trees and their epiphytes are commensal - the epiphytes get a place to live and the trees are no worse for wear. However, there are a handful of trees native to the Pacific Northwest that are changing the way we think about the relationship between these organisms in temperate rainforests.

Though conifers dominate the Pacific Northwest landscape, plenty of broad leaved tree species abound. One of the most easily recognizable is the bigleaf maple (Acer macrophyllum). Both its common and scientific names hint at its most distinguishing feature, its large leaves. Another striking feature of this tree are its epiphyte communities. Indeed, along with the vine maple (A. circinatum), these two tree species carry the greatest epiphyte to shoot biomass ratio in the entire forest. Numerous species of moss, liverworts, lichens, and ferns have been found growing on the bark and branches of these two species.

Epiphyte loads are pretty intense. One study found that the average epiphyte crop of a bigleaf maple weighs around 78 lbs. (35.5 Kg). That is a lot of biomass living in the canopy! The trees seem just fine despite all of that extra weight. In fact, the relationship between bigleaf and vine maples and their epiphyte communities run far deeper than commensalism. Evidence accumulated over the last few decades has revealed that these maples are benefiting greatly from their epiphytic adornments.

Rainforests, both tropical and temperate, generally grow on poor soils. Lots of rain and plenty of biodiversity means that soils are quickly leached of valuable nutrients. Any boost a plant can get from its environment will have serious benefits for growth and survival. This is where the epiphytes come in. The richly textured mix of epiphytic plants greatly increase the surface area of any branch they live on. And all of that added surface area equates to more nooks and crannies for water and dust to get caught and accumulate.

Photo by SuperFantastic licensed under CC BY 2.0

Photo by SuperFantastic licensed under CC BY 2.0

When researchers investigated just how much of a nutrient load gets incorporated into these epiphyte communities, the results painted quite an impressive picture. On a single bigleaf maple, epiphyte leaf biomass was 4 times that of the host tree despite comprising less than 2% of the tree's above ground weight. All of that biomass equates to a massive canopy nutrient pool rich in nitrogen, phosphorus, potassium, calcium, magnesium, and sodium. Much of these nutrients arrive in the form of dust-sized soil particles blowing around on the breeze. What's more, epiphytes act like sponges, soaking up and holding onto precious water well into the dry summer months.

Now its reasonable to think that nutrients and water tied up in epiphyte biomass would be unavailable to trees. Indeed, for many species, epiphytes may slow the rate at which nutrients fall to and enter into the soil. However, trees like bigleaf and vine maples appear to be tapping into these nutrient and water-rich epiphyte mats.

A subcanopy of vine maple (Acer circinatum) draped in epiphytes.

A subcanopy of vine maple (Acer circinatum) draped in epiphytes.

Both bigleaf and vine maples (as well as a handful of other tree species) are capable of producing canopy roots. Wherever the epiphyte load is thick enough, bundles of cells just under the bark awaken and begin growing roots. This is a common phenomenon in the tropics, however, the canopy roots of these temperate trees differ in that they are indistinguishable in form and function from subterranean roots.

Canopy roots significantly increase the amount of foraging an individual tree can do for precious water and nutrients. Additionally, it has been found that canopy roots of the bigleaf maple even go as far as to partner with mycorrhizal fungi, thus unlocking even more potential for nutrient and water gain. In the absence of soil nutrient and water pools, a small handful of trees in the Pacific Northwest have unlocked a massive pool of nutrients located above us in the canopy. Amazingly, it has been estimated that mature bigleaf and vine maples with well developed epiphyte communities may actually gain a substantial fraction of their water and nutrient needs via their canopy roots.

 

Photo Credits: [2]

Further Reading: [1] [2] [3] [4] [5]

 

The Tecate Cypress: A Tree Left Hanging in the Balance

Photo by Anthonysthwd licensed under CC BY-SA 4.0

Photo by Anthonysthwd licensed under CC BY-SA 4.0

The tecate cypress is a relict. Its tiny geographic distribution encompasses a handful of sights in southern California and northwestern Mexico. It is a holdover from a time when this region was much cooler and wetter than it is today. It owes its survival and persistence to a combination of toxic soils, a proper microclimate, and fires that burn through every 30 to 40 years. However, things are changing for the Tecate cypress and they are changing fast. The fires that once ushered in new life for isolated populations of this tree are now so intense that they may spell disaster.

1024px-Cupressus_forbesii_range_map_1.png

The taxonomy of the Tecate cypress has undergone a few revisions since it was first described. Early work on this species suggested it was simply a variety of Cupressus guadalupensis. Subsequent genetic testing revealed that these two trees were distinct enough to each warrant species status of their own. It was then given the name Cupressus forbesii, which will probably be familiar to most folks who know it well. Work done on the Tecate cypress back in 2012 has seen it moved out of the genus Cupressus and into the genus Hesperocyparis. As far as I am concerned, whether you call it Cupressus forbesii or Hesperocyparis forbesii matters not at this point.

The Tecate cypress is an edaphic endemic meaning it is found growing only on specific soil types in this little corner of the continent. It appears to prefer soils derived from ultramafic rock. The presence of high levels of heavy metals and low levels of important nutrients such and potassium and nitrogen make such soils extremely inhospitable to most plants. As such, the Tecate cypress experiences little competition from its botanical neighbors. It also means that populations of this tree are relatively small and isolated from one another.

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

The Tecate cypress also relies on fire for reproduction. Its tiny cones are serotinous, meaning they only open and release seeds in response to a specific environmental trigger. In this case, it’s the heat of a wildfire. Fire frees up the landscape of competition for the tiny Tecate cypress seedlings. After a low intensity fire, literally thousands of Tecate cypress seedlings can germinate. Even if the parent trees burn to a crisp, the next generation is there, ready to take their place.

At least this is how it has happened historically. Much has changed in recent decades and the survival of these isolated Tecate cypress populations hangs in the balance. Fires that once gave life are now taking it. You see, decades of fire suppression have changed that way fire behaves in this system. With so much dry fuel laying around, fires burn at a higher intensity than they have in the past. What's more, fires sweep through much more frequently today than they have in the past due in large part to longer and longer droughts.

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

Taken together, this can spell disaster for small, isolated Tecate cypress populations. Even if thousands of seedlings germinate and begin to grow, the likelihood of another fire sweeping through within a few years is much higher today. Small seedlings are not well suited to cope with such intense wildfires and an entire generation can be killed in a single blaze. This is troubling when you consider the age distributions of most Tecate cypress stands. When you walk into a stand of these trees, you will quickly realize that all are of roughly the same age. This is likely due to the fact that they all germinated at the same time following a previous fire event.

If all reproductive individuals come from the same germination event and wildfires are now killing adults and seedlings alike, then there is serious cause for concern. Additionally, when we lose populations of Tecate cypress, we are losing much more than just the trees. As with any plant, these trees fit into the local ecology no matter how sparse they are on the landscape. At least one species of butterfly, the rare Thorne's hairstreak (Callophrys gryneus thornei), lays its eggs only on the scale-like leaves of the Tecate cypress. Without this tree, their larvae have nothing to feed on.

Thorne's hairstreak (Callophrys gryneus thornei), lays its eggs only on the scale-like leaves of the Tecate cypress. Photo by USFWS Pacific Southwest Region licensed under CC BY 2.0

Thorne's hairstreak (Callophrys gryneus thornei), lays its eggs only on the scale-like leaves of the Tecate cypress. Photo by USFWS Pacific Southwest Region licensed under CC BY 2.0

Although things in the wild seem uncertain for the Tecate cypress, there is reason for hope. Its lovely appearance and form coupled with its unique ecology has led to the Tecate cypress being something of a horticultural curiosity in the state of California. Seeds are easy enough to germinate provided you can get them out of the cones and the trees seem to do quite well in cultivation provided competition is kept to a minimum. In fact, specimen trees seem to adapt quite nicely to California's cool, humid coastal climate. Though the future of this wonderful endemic is without a doubt uncertain, hope lies in those who care enough to grow and cultivate this species. Better management practices regarding fire and invasive species, seed collection, and a bit more public awareness may be just what this species needs.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

Light Pollution and Plants

I love walking around my town at night. Things really seem to slow down when the sun sets. Growing up in the country, my evening walks were lit only by the moon. Now that I live in civilization, however, street lights punctuate the darkness on every block. Walking around I can't help but wonder what all of this artificial light is doing to our photosynthetic neighbors. 

The vast majority of plants need light to make food. It doesn't matter if this light comes from the sun or a high powered electric light, as long as it is strong enough for photosynthesis. Even weaker wavelengths of light serve a purpose for our botanical friends. Plants can sense the relative length of uninterrupted darkness in their environment and they use that information for myriad internal processes. Its this dependence on light that makes many plant species vulnerable to our addiction to artificial lighting.

Just because a light isn't strong enough for photosynthesis doesn't mean it isn't affecting nearby plants. This is especially true for plants that use day length for timing events like bud break, flowering, and dormancy. The type of lighting favored by most municipalities emit wavelengths that peak especially high in the red to far-red ratio of the electromagnetic spectrum, which makes them particularly adept at disrupting plant photoperiods.

One of the most obvious effects of artificial lighting on plants can readily be seen in street trees growing in temperate regions. Though light sensitivity varies from species to species, trees growing near street lights tend to hold onto their leaves much longer in the fall than trees farther away. Because artificial lighting is enough to trick the red to far-red receptors in plants, it can "convince" trees that the days are longer than they actually are. Additional photosynthesis may not seem that bad but holding onto leaves longer makes trees more susceptible to ice damage. 

The effects of artificial lighting continues into spring as well. Trees growing near lights tend to break buds and flower earlier in the spring. This too makes them susceptible to frost damage. Early flowering plants run the risk of losing their entire reproductive effort by blooming before the threat of frost is gone. This can really mess up their relationship with pollinators. 

The effects of artificial lighting can even influence the way in which plants grow. Research has found that plants growing near street lights had larger leaves with more stomatal pores and these pores remained open for considerably longer than plants growing under unlit night conditions. This made them more susceptible to pollution and drought, two stressors that are all too common in urban environments. This issues is made much worse if the artificial lighting never turns off throughout the night. 

Artificial lighting affects more than just plant physiology too. Scaling up, the effects of night lights can have whole ecosystem consequences. For instance, researchers found that artificial lighting was enough to change the entire composition of grassland communities. Some plants responded well to artificial lights, producing more biomass and vegetative offshoots to the point that they pushed out other species. This was compounded by the change in reproductive output, with certain species showing higher seed production than others.

Photo by Lamiot licensed under CC BY-SA 4.0

Photo by Lamiot licensed under CC BY-SA 4.0

Changes in plant physiology, phenology, and composition also affect myriad other organisms in the environment. Changes in the timing of flowering or bud break can disrupt things like insects and birds that rely on these events for food and shelter. Research even suggests that forest regeneration is being altered by artificial lighting. Seed dispersers such as bats often will not fly into well-lit areas at night, therefore reducing the amount of seeds falling in those areas. Such research is still in its infancy meaning we have a lot more to learn about how artificial lighting is disrupting natural events.

Light pollution is so much more than an aesthetic issue. Artificial lighting is clearly having pronounced effects on plant life. Disrupt plants and you disrupt life as we know it. Certainly more work is needed to tease out all the ways in which lights influence plants, however, it is clear that we must work hard on reducing light pollution around the globe.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]

The Curious Case of the Yellowwood Tree

Photo by Plant Image Library licensed under CC BY-SA 2.0

Photo by Plant Image Library licensed under CC BY-SA 2.0

The immense beauty and grace of the yellowwood (Cladrastis kentukea) is inversely proportional to its abundance. This unique legume is endemic to the eastern United States and enjoys a strangely patchy distribution. Its ability to perform well when planted far outside of its natural range only deepens the mystery of the yellowwood.

The natural range of the yellowwood leaves a lot of room for speculation. It hits its highest abundances in the Appalachian and Ozark highlands where it tends to grow on shaded slopes in calcareous soils. Scattered populations can be found as far west as Oklahoma and as far north as southern Indiana but nowhere is this tree considered a common component of the flora.

Cladrastis_kentukea_range_map_1.png

Though the nature of its oddball distribution pattern iscurious to say the least, it is likely that its current status is the result of repeated glaciation events and a dash of stochasticity. The presence of multiple Cladrastis species in China and Japan and only one here in North America is a pattern shared by multiple taxa that once grew throughout each continent. A combination of geography, topography, and repeated glaciation events has since fragmented the ranges of many genera and perhaps Cladrastis is yet another example.

The fact that yellowwood seems to perform great as a specimen tree well outside of its natural range says to me that this species was probably once far more wide spread in North America than it is today. It may have been pushed south by the ebb and flow of the Laurentide Ice Sheet and, due to the stochastic nuances of seed dispersal, never had a chance to recolonize the ground it had lost. Again, this is all open to speculation as this point.

Despite being a member of the pea family, yellowwood is not a nitrogen fixer. It does not produce nodules on its roots that house rhizobium. As such, this species may be more restricted by soil type than other legumes. Perhaps its inability to fix nitrogen is part of the reason it tends to favor richer soils. It may also have played a part in its failure to recolonize land scraped clean by the glaciers.

Yellowwood's rarity in nature only makes finding this tree all the more special. It truly is a sight to behold. It isn't a large tree by any standards but what it lacks in height it makes up for in looks. Its multi-branched trunk exhibits smooth, gray bark reminiscent of beech trees. Each limb is decked out in large, compound leaves that turn bright yellow in autumn.

Photo by Elektryczne jabłko licensed under CC BY-SA 4.0

Photo by Elektryczne jabłko licensed under CC BY-SA 4.0

When mature, which can take upwards of ten years, yellowwood produces copious amounts of pendulous inflorescences. Each inflorescence sports bright white flowers with a dash of yellow on the petals. In some instances, even pink flowers are produced! It doesn't appear that any formal pollination work has been done on this tree but surely bees and butterflies alike visit the blooms. The name yellowwood comes from the yellow coloration of its heartwood, which has been used to make furniture and gunstocks in the past.

Whether growing in the forest or in your landscape, yellowwood is one of the more stunning trees you will find in eastern North America. Its peculiar natural history only lends to its allure.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

Leafy Cacti?

Pereskia aculeata  photo by scott.zona licensed under CC BY 2.0

Pereskia aculeata photo by scott.zona licensed under CC BY 2.0

At first glance, there is little about a Pereskia that would suggest a relation to what we know as cacti. Even a second, third, and forth glance probably wouldn't do much to persuade the casual observer that these plants have a place on cacti family tree. All preconceptions aside, Pereskia are in fact members of the family Cactaceae and quite interesting ones at that.

Most people readily recognize the leafless, spiny green stems of a cactus. Indeed, this would appear to be a unifying character of the family. Pereskia is proof that this is not the case. Though other cacti occasionally produce either tiny, vestigial leaves or stubby succulent leaves, Pereskia really break the mold by producing broad, flattened leaves with only a hint of succulence.

Pereskia spines are produced from areoles in typical cactus fashion. Photo by Frank Vincentz licensed under CC BY-SA 3.0

Pereskia spines are produced from areoles in typical cactus fashion. Photo by Frank Vincentz licensed under CC BY-SA 3.0

What's more, instead of clusters of Opuntia-like pads or large, columnar trunks, Pereskia are mainly shrubby plants with a handful of scrambling climbers mixed in. Similar to their more succulent cousins, the trunks of Pereskia are usually adorned with clusters of long spines for protection. Additionally, each species produces the large, showy, cup-like blooms we have come to expect from cacti.

They are certainly as odd as they are beautiful. As it stands right now, taxonomists recognize two clades of Pereskia - Clade A, which are native to a region comprising the Gulf of Mexico and Caribbean Sea (this group is currently listed under the name Leuenbergeria) and Clade B, which are native to regions just south of the Amazon Basin. This may seem superficial to most of us but the distinction between these groups has a lot to teach us about the evolution of what we know of as cacti. 

Pereskia grandifolia Photo by Anne Valladares (public domain)

Pereskia grandifolia Photo by Anne Valladares (public domain)

Genetically speaking, the genus Pereskia sorts out at the base of the cactus family tree. Pereskia are in fact sister to all other cacti. This is where the distinction between the two Pereskia clades gets interesting. Clade A appears to be the older of the two and all members of this group form bark early on in their development and their stems lack a feature present in all other cacti - stomata. Stomata are microscopic pours that allow the exchange of gases like CO2 and oxygen. Clabe B, on the other hand, delay bark formation until later in life and all of them produce stomata on their stems.

The reason this distinction is important is because all other cacti produce stomata on their stems as well. As such, their base at the bottom of the cactus tree not only shows us what the ancestral from of cactus must have looked like, it also paints a relatively detailed picture of the evolutionary trajectory of subsequent cacti lineages. It would appear that the ancestor of all cacti started out as leafy shrubs that lacked the ability to perform stem photosynthesis. Subsequent evolution saw a delay in bark formation, the presence of stomata on the stem, and the start of stem photosynthesis, which is a defining feature of all other cacti.

Pereskia aculeata Photo by Ricardosdag licensed under CC BY-SA 4.0

Pereskia aculeata Photo by Ricardosdag licensed under CC BY-SA 4.0

If you are as excited about Pereskia as I am, then you , my friend, are in luck. A handful of Pereskia species have found their way into the horticulture trade. With a little luck attention to detail, you too can share you home with one of these wonderful plants. Just be warned, they get tall and their spines, which are often hidden by the leaves, are a force to be reckoned with. Tread lightly with these wonderfully odd cacti. Celebrate their as the evolutionary wonders that they are!

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2]

 

 

Palo Verde

DSCN4207.JPG

One of the first plants I noticed upon arriving in the Sonoran Desert were these small spiny trees without any leaves. The reason they caught my eye was that every inch of them was bright green. It was impossible to miss against the rusty brown tones of the surrounding landscape. It didn’t take long to track down the identity of this tree. What I was looking at was none other than the palo verde (Parkinsonia florida).

Palo verde belong to a small genus of leguminous trees. Parkinsonia consists of roughly 12 species scattered about arid regions of Africa and the Americas. The common name of “palo verde” is Spanish for “green stick.” And green they are! Like I said, every inch of this tree gives off a pleasing green hue. Of course, this is a survival strategy to make the most of life in arid climates.

IMG_4072.JPG

Despite typically being found growing along creek beds, infrequent rainfall limits their access to regular water supplies. As such, these trees have adapted to preserve as much water as possible. One way they do this is via their deciduous habit. Unlike temperate deciduous trees which drop their leaves in response to the changing of the seasons, palo verde drop their leaves in response to drought. And, as one can expect from a denizen of the desert, drought is the norm. Leaves are also a conduit for moisture to move through the body of a plant. Tiny pours on the surface of the leaf called stomata allow water to evaporate out into the environment, which can be quite costly when water is in short supply.

The tiny pinnate leaves and pointy stems of the palo verde. 

The tiny pinnate leaves and pointy stems of the palo verde. 

Not having leaves for most of the year would be quite a detriment for most plant species. Leaves, after all, are where most of the photosynthesis takes place. That is, unless, you are talking about a palo verde tree. All of that green coloration in the trunk, stems, and branches is due to chlorophyll. In essence, the entire body of a palo verde is capable of performing photosynthesis. In fact, estimates show that even when the tiny pinnate leaves are produced, a majority of the photosynthetic needs of the tree are met by the green woody tissues.

DSCN4116.JPG

Flowering occurs whenever there is enough water to support their development, which usually means spring. They are small and bright yellow and a tree can quickly be converted into a lovely yellow puff ball seemingly overnight. Bees relish the flowers and the eventual seeds they produce are a boon for wildlife in need of an energy-rich meal.

However, it isn’t just wildlife that benefits from the presence of these trees. Other plants benefit from their presence as well. As you can probably imagine, germination and seedling survival can be a real challenge in any desert. Heat, sun, and drought exact a punishing toll. As such, any advantage, however slight, can be a boon for recruitment. Research has found that palo verde trees act as important nurse trees for plants like the saguaro cactus (Carnegiea gigantea). Seeds that germinate under the canopy of a palo verde receive just enough shade and moisture from the overstory to get them through their first few years of growth.

In total, palo verde are ecologically important trees wherever they are native. What’s more, their ability to tolerate drought coupled with their wonderful green coloration has made them into a popular tree for native landscaping. It is certainly a tree I won’t forget any time soon.

Further Reading: [1] [2]

The Other Pawpaws

Asimina tetramera Photo by Bob Peterson licensed under CC BY-SA 2.0

Asimina tetramera Photo by Bob Peterson licensed under CC BY-SA 2.0

The pawpaw (Asimina triloba) has been called "America's forgotten fruit." Once popular among Native Americans and settlers alike, it fell out of the public eye until quite recently. If one considers the pawpaw "forgotten" then its relatives have been straight up ignored. Indeed, the pawpaw shares the North American continent with 10 other Asimina species. 

Asimina angustifolia Photo by Mason Brock

Asimina angustifolia Photo by Mason Brock

The genus Asimina belongs to a family of plants called the custard apple family - Annonaceae. It is a large family that mostly resides in the tropics. In fact, the genus Asimina is the only group to occur outside of the tropics. Though A. triloba finds itself growing as far north as Canada, the other species within this genus are confined to southeastern North America in coastal plain communities. 

Asimina parviflora Photo by Mason Brock

Asimina parviflora Photo by Mason Brock

As I mentioned above, there are 10 other species in the genus and at least one naturally occurring hybrid. For the most part, they all prefer to grow where regular fires keep competing vegetation at bay. They are rather small in stature, usually growing as shrubs or small, spindly trees. They can be pretty inconspicuous until it comes time to flower.

Asimina obovata Photo by Homer Edward Price licensed under CC BY 2.0

Asimina obovata Photo by Homer Edward Price licensed under CC BY 2.0

The flowers of the various Asimina species are relatively large and range in color from bright white to deep red, though the most common flower color seems to be creamy white. The flowers themselves give off strange odors that have been affectionately likened to fermenting fruit and rotting meat. Of course, these odors attract pollinators. Asimina aren't much of a hit with bees or butterflies. Instead, they are mainly visited by blowflies and beetles. 

As is typical of the family, all of the Asimina produce relatively large fruits chock full of hard seeds. Seed dispersal for the smaller species is generally accomplished through the help of mammals like foxes, coyotes, raccoons, opossums, and even reptiles such as the gopher tortoise. Because the coastal plain of North America is a fire-prone ecosystem, most of the Asimina are well adapted to cope with its presence. In fact, most require it to keep their habitat open and free of too much competition. At least one species, A. tetramera, is considered endangered in large part due to fire sequestration.

Asimina reticulata Photo by Bob Peterson licensed under CC BY-SA 2.0

Asimina reticulata Photo by Bob Peterson licensed under CC BY-SA 2.0

All of the 11 or so Asimina species are host plants for the zebra swallowtail butterfly (Eurytides marcellus) and the pawpaw sphinx moth (Dolba hyloeus). The specialization of these two insects and few others has to do with the fact that all Asimina produce compounds called acetogenins, which act as insecticides. As such, only a small handful of insects have adapted to be able to tolerate these toxic compounds. 

Asimina tetramera

Asimina tetramera

Sadly, like all other denizens of America's coastal plain forest, habitat destruction is taking its toll on Asimina numbers. As mentioned above, at least one species (A. tetramera) is considered endangered. We desperately need to protect these forest habitats. Please support a local land conservation organization like the Partnership For Southern Forestland Conservation today!

LISTEN TO AN INTERVIEW ALL ABOUT PAWPAW FLOWER SCENTS

See a list of the Asimina of North America here: [1] 

Further Reading: [1] [2] [3] [4] [5]