Meet Pokeweed's Tree-Like Cousin

Photo by Roberto Fiadone licensed under CC BY-SA 4.0

Photo by Roberto Fiadone licensed under CC BY-SA 4.0

There is more than one way to build a tree. For that reason and more, “tree” is not a taxonomic designation. Arborescence has evolved independently throughout the botanical world and many herbaceous plants have tree-like relatives. I was shocked to learn recently of a plant native to the Pampa region of South America commonly referred to as ombú. At first glance it looks like some sort of fig, with its smooth bark and sinuous, buttressed roots. Deeper investigation revealed that this was not a fig. Ombú is actually an arborescent cousin of pokeweed!

Photo by Dick Culbert licensed under CC BY 2.0

Photo by Dick Culbert licensed under CC BY 2.0

The scientific name of ombú is Phytolacca dioica. As its specific epithet suggests, plants are dioecious meaning individuals are either male or female. Unlike its smaller, herbaceous cousins, ombú is an evergreen perennial. Because they can grow all year, these plants can reach bewildering proportions. Heights upwards of 60 ft. (18 m.) are not unheard of and the crowns of more robust specimens can easily attain diameters of 40 to 50 ft. (12 - 18 m.)! What makes such sizes all the more impressive is the way in which ombú is able to achieve such growth.

Photo by Lanntaron licensed under CC BY-SA 3.0

Photo by Lanntaron licensed under CC BY-SA 3.0

Ombú is thought to have evolved from an herbaceous ancestor. Cut into the trunk of one of these trees and you will see that this phylogenetic history has left its mark. Ombú do not produce what we think of as wood. Instead, much of the support for branches and stems comes from turgor pressure. Also, the way in which these trees grow is not akin to what you would see from something like an oak or a maple. Whereas woody trees undergo secondary growth in which the cambium layer differentiates into xylem and phloem, thus thickening stems and roots, ombú exhibits a unique form of stem and root thickening called “anomalous secondary thickening.”

Essentially what this means is that instead of a single layer of cambium forming xylem and phloem, ombú cambium exhibits unidirectional thickening of the cambium layer. There are a lot of nitty gritty details to this kind of growth and I must admit I don’t have a firm grasp on the mechanics of it all. The point of the matter is that anomalous secondary thickening does not produce wood as we know it and instead leads to rapid growth of weak and spongy tissues. This is why turgor pressure is so important to the structural integrity of these trees. It has been estimated that the trunk and branches of an ombú is 80% water.

A cross section of an ombú limb showing harder xylem tissues separated by spongy parenchyma that has since disintegrated. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

A cross section of an ombú limb showing harder xylem tissues separated by spongy parenchyma that has since disintegrated. Photo by Tony Rodd licensed under CC BY-NC-SA 2.0

Like all members of this genus, ombú is plenty toxic. Despite this, ombú appears to have been embraced and is widely planted as a specimen tree in parks, along sidewalks, and in gardens in South America and elswhere. In fact, it is so widely planted in Africa that some consider it to be a growing invasive issue. All in all I was shocked to learn of this species. It caused me to rethink some of the assumptions I hold onto with some lineages I only know from temperate regions. It is amazing what natural selection has done to this genus and I am excited to explore more arborescent anomalies from largely herbaceous groups.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3]

The First Trees Ripped Themselves Apart To Grow

Illustration by Falconaumanni licensed under CC BY-SA 3.0

Illustration by Falconaumanni licensed under CC BY-SA 3.0

A new set of fossil discoveries show that the evolutionary arms race that are forests started with plants that literally had to rip themselves apart in their battle for the canopy. The first forests on this planet arose some 385 million years ago and were unlike anything we know today. They consisted of a clade of trees known scientifically as Cladoxylopsids, which have no living representatives in these modern times. How these trees lived and grew has remained a mystery since their fossilized trunks were first discovered but a new set of fossils from China reveals that these trees were unique in more ways than one.

Laying eyes on a full grown Cladoxylopsid would be a strange experience to say the least. Their oddly swollen base would gradually taper up a trunk that stretched some 10 to 12 meters (~30 - 40 feet) into a canopy of its relatives. They had no leaves either. Instead, their photosynthetic organs consisted of branch-like growths that were covered in twig-like projections. Whereas most fossils revealed great detail about their outward appearance, we have largely been in the dark on what their internal anatomy was like. Excitingly, a set of exquisitely preserved fossils from Xinjiang, China has changed that. What they reveal about these early trees is quite remarkable.

As it turns out, the trunks of these early trees were hollow. Unlike the trees we know today, whose xylem expands in concentric rings and forms a solid trunk, the trunk of Cladoxylopsid was made up of strands of xylem connected by a network of softer tissues. Each of these strands was like a mini tree in and of itself. Each strand formed its own concentric rings that gradually increased the size of the trunk. However, this gradual expansion did not appear to be a gentle process.

As these strands increased in size, the trunk would grow larger and larger. In doing so, the tissues connecting the strands were pulled tighter and tighter. Eventually they would tear under the strain. They would gradually repair themselves over time but the effect on the trunk was quite remarkable. In effect, the base of the tree would literally collapse in on itself in a controlled manner. You could say that older Cladoxylopsids developed a bit of a muffin top at their base. 

A cross section of a Cladoxylopsid trunk showing the hollow center, individual xylem strands, and the network of connective tissues. [SOURCE]

A cross section of a Cladoxylopsid trunk showing the hollow center, individual xylem strands, and the network of connective tissues. [SOURCE]

Although this seems very detrimental, the overall structure of the tree would have been sturdy. The authors liken this to the design of the Eiffel tower. Indeed, a hollow cylinder is actually stronger than a solid one of the same dimensions. When looked at in the context of all other trees, this form of growth is truly unique. No other trees are constructed in such a manner.

The authors speculate that this form of growth may be why these trees eventually went extinct. It would have taken a lot of energy to grow in that manner. It is possible that, as more efficient forms of growth were evolving, the Cladoxylopsids may not have been able to compete. It is anyone's guess at this point but this certainly offers a window back into the early days of tree growth. It also shows that there has always been more than one way to grow a tree.

LEARN MORE ABOUT THESE TREES AND THE FORESTS THEY MADE IN EPISODE 253 OF THE IN DEFENSE OF PLANTS PODCAST.

Photo Credits: [1] [2]

Further Reading: [1]

Why Trees Have Rings (and why they are so useful)

Dendrochronology is a field of study that focuses on tree rings. Though it may not be obvious, the amount of information we gain from looking at these rings is astounding. This research goes far deeper than simply finding out how old a tree was when it died. Dendrochronological data can be used to investigate paleoclimates, paleoecologies, and the archaeological dating of buildings and artwork. It is amazing how a practiced eye can look back in time. To date, we have an unbroken dendrochronological record for the northern hemisphere dating back some 12,000+ years!

All of this would not be possible if it were not for tree rings. But what exactly are they and how do they form? The answer is physiological. Essentially tree rings result from patterns in vascular tissues. Early in the spring, before the leaves start to grow, a layer of tissue just under the bark called the cambium begins to divide. In this cool, water-laden time of the growing season the vessels that are produced are large and less dense. This is the beginning of the spring or early wood. Although they are not as strong as vessels that are produced later in the season, they sure can move a lot of water. Things are a bit different for conifers. Because they do not produce vessel elements in their wood, this large cell growth is initiated instead by large amounts of a growth hormone called auxin that is produced by the new buds. This causes the cells of the early wood in conifers to grow large in a similar way to that of the hardwoods. 

As summer heats up, things start to change. The cambium starts producing smaller, thicker cells. The vessels that result from this are much stronger than those of the early wood. This late wood as it is called gives trees much of their rigidity and strength. Late wood is also resistant to what is called cavitation, a process in which water within the tree can literally vaporize, causing a damaging embolism during the hottest months of summer. In conifers, bud growth stops by mid to late summer and with it much of the production of auxin. This results in smaller vessels as well. 

In temperate regions, this cycle of growth occurs over the course of a growing season. As such, each ring demarcates a year in that trees life. Because so much of a trees growth is determined by environmental conditions, the size and shape of the rings can tell a lot about the conditions in which that tree was growing. That is why dendrochronology is such a useful tool. By looking at tree rings from all over the world, researchers can tell what was going on at that point in time. And, though it was long thought that this was a phenomenon restricted to seasonal forests, we are finding that even some tropical trees produce annual growth rings. This is especially true in regions that have a measurable dry season. It just goes to show you that data comes in many shapes, sizes, and forms.

LEARN MORE ABOUT DENDROCHRONOLOGY IN EPISODE 247 OF THE IN DEFENSE OF PLANTS PODCAST

Further Reading: [1] [2] [3]