How Fungus Gnats Maintain Jack-in-the-pulpits

There are a variety of ways that the boundaries between species are maintained in nature. Among plants, some of the best studied examples include geographic distances, differences in flowering phenology, and pollinator specificity. The ability of pollinators to maintain species boundaries is of particular interest to scientists as it provides excellent examples of how multiple species can coexist in a given area without hybridizing. I recent study based out of Japan aimed to investigate pollinator specificity among fungus gnats and five species of Jack-in-the-pulpit (Arisaema spp.) and found that pollinator isolation is indeed a very strong force in maintaining species identity among these aroids, especially in the wake of forest disturbance.

Fungus gnats are the bane of many a houseplant grower. However, in nature, they play many important ecological roles. Pollination is one of the most underappreciated of these roles. Though woefully understudied compared to other pollination systems, scientific appreciation and understanding of fungus gnat pollination is growing. Studying such pollination systems is not an easy task. Fungus gnats are small and their behavior can be very difficult to observe in the wild. Luckily, Jack-in-the-pulpits often hold floral visitors captive for a period of time, allowing more opportunities for data collection.

By studying the number and identity of floral visitors among 5 species of Jack-in-the-pulpit native to Japan, researchers were able to paint a very interesting picture of pollinator specificity. It turns out, there is very little overlap among which fungus gnats visit which Jack-in-the-pulpit species. Though researchers did not analyze what exactly attracts a particular species of fungus gnat to a particular species of Jack-in-the-pulpit, evidence from other systems suggests it has something to do with scent.

Like many of their aroid cousins, Jack-in-the-pulpits produce complex scent cues that can mimicking everything from a potential food source to a nice place to mate and lay eggs. Fooled by these scents, pollinators investigate the blooms, picking up and (hopefully) depositing pollen in the process. One of the great benefits of pollinator specificity is that it greatly increases the chances that pollen will end up on a member of the same species, thus reducing the chances of wasted pollen or hybridization.

Still, this is not to say that fungus gnats are solely responsible for maintaining boundaries among these 5 Jack-in-the-pulpit species. Indeed, geography and flowering time also play a role. Under ideal conditions, each of the 5 Jack-in-the-pulpit species they studied tend to grow in different habitats. Some prefer lowland forests whereas others prefer growing at higher elevations. Similarly, each species tends to flower at different times, which means fungus gnats have few other options but to visit those blooms. However, such barriers quickly break down when these habitats are disturbed.

Forest degradation and logging can suddenly force many plant species with different habitat preferences into close proximity with one another. Moreover, some stressed plants will begin to flower at different times, increasing the overlap between blooming periods and potentially allowing more hybridization to occur if their pollinators begin visiting members of other species. This is where the strength of fungus gnat fidelity comes into play. By examining different Jack-in-the-pulpit species flowering in close proximity to one another, the team was able to show that fungus gnats that prefer or even specialize on one species of Jack-in-the-pulpit are not very likely to visit the inflorescence of a different species. Thanks to these preferences, it appears that, thanks to their fungus gnat partners, these Jack-in-the-pulpit species can continue to maintain species boundaries even in the face of disturbance.

All of this is not to say that disturbance can’t still affect species boundaries among these plants. The researchers were quick to note that forest disturbances affect more than just the plants. When a forest is logged or experiences too much pressure from over-abundant herbivores such as deer, the forest floor dries out a lot quicker. Because fungus gnats require high humidity and soil moisture to survive and reproduce, a drying forest can severely impact fungus gnat diversity. If the number of fungus gnat species declines, there is a strong change that these specific plant-pollinator interactions can begin to break down. It is hard to say what affect this could have on these Jack-in-the-pulpit species but a lack of pollinators is rarely a good thing. Certainly more research is needed.

Photo Credit: [1]

Further Reading: [1]

A Shout Out to Western Skunk Cabbage

Photo by Martin Bravenboer licensed under CC BY-ND 2.0.

Photo by Martin Bravenboer licensed under CC BY-ND 2.0.

We all have our biases and one of my biggest botanical bias is that I often think of plants from eastern North America before my mind heads further west. I can’t really fault myself for it because so many of my early plant experiences occurred east of the Mississippi. I want to remedy this a bit today by drawing your attention to a wonderful aroid who frequently gets overshadowed by its eastern cousin.

I am of course talking about western skunk cabbage (Lysichiton americanus). This incredibly beautiful plant enjoys a distribution that ranges from southern Alaska to central California and west into Wyoming and Montana. Like its eastern cousin, western skunk cabbage was awarded its common name thanks to the pungent odor it produces. Its blooming period ranges from March into May depending on where they are growing and the inflorescence is truly something to write home about.

The spadix of western skunk cabbage complete with a tiny rove beetle pollinator. Photo by Walter Siegmund lincensed under CC BY-SA 3.0

The spadix of western skunk cabbage complete with a tiny rove beetle pollinator. Photo by Walter Siegmund lincensed under CC BY-SA 3.0

Emerging from the base of the plant is a bright yellow structure called a spathe. The spathe envelopes the actual flowering parts, a phallic-looking structure covered in flowers called a spadix. The spadix emits various volatile compounds that function as pollinator attractants. However, whereas many would suggest flies are the preferred pollinator, research indicates that a tiny species of rove beetle called Pelecomalium testaceum takes up the bulk of pollination duties for western skunk cabbage throughout much of its range.

The volatile compounds aren’t there to trick the beetles into thinking they are getting some sort of reward. The plant does actually reward the rove beetles with pollen to eat and relatively safe place to mate. We call these types of signals “honest signals” as they act as an honest calling card that signifies rewards are to be had.

A closer look at a Pelecomalium rove beetle. Not sure which species. Photo by Judy Gallagher licensed under CC BY 2.0

A closer look at a Pelecomalium rove beetle. Not sure which species. Photo by Judy Gallagher licensed under CC BY 2.0

Unfortunately, the beauty of western skunk cabbage has seen it enter into novelty garden collections in other temperate regions of the world. In northern Europe, western skunk cabbage has escaped the confines of the garden and is now considered an invasive species in wetlands of that region. Take care to choose you garden plants wisely. Always plant native plants when the option presents itself.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

The Fungus-Mimicking Mouse Plant

18156089_1751541684872689_3055288262507833768_o.jpg

The mouse plant (Arisarum proboscideum) is, to me, one of the most charming aroids in existence. Its small stature and unique inflorescence are a joy to observe. It is no wonder that this species has attained a level of popularity among those of us who enjoy growing oddball plants. Its unique appearance may be reason enough to appreciate this little aroid but its pollination strategy is sure to seal the deal.

The mouse plant is native to shaded woodlands in parts of Italy and Spain. It is a spring bloomer, hitting peak flowering around April. It has earned the name “mouse plant” thanks to the long, tail-like appendage that forms at the end of the spathe. That “tail” is the only part of the inflorescence that sticks up above the arrow-shaped leaves. The rest of the structure is presented down near ground level. From its stature and position, to its color, texture, and even smell, everything about the inflorescence is geared around fungal mimicry.

The mouse plant is pollinated by fungus gnats. However, it doesn’t offer them any rewards. Instead, it has evolved a deceptive pollination syndrome that takes advantage of a need that all living things strive to attain - reproduction. To draw fungus gnats in, the mouse plant inflorescence produces compounds that are said to smell like fungi. Lured by the scent, the insects utilize the tail-like projection of the spathe as a sort of highway that leads them to the source.

Once the fungus gnats locate the inflorescence, they are presented with something incredibly mushroom-like in color and appearance. The only opening in the protective spathe surrounding the spadix and flowers is a tiny, dark hole that opens downward towards the ground. This is akin to what a fungus-loving insect would come to expect from a tiny mushroom cap. Upon entering, the fungus gnats are greeted with the tip of the spadix, which has come to resemble the texture and microclimate of the underside of a mushroom.

Anatomy of a mouse plant inflorescence [SOURCE]

Anatomy of a mouse plant inflorescence [SOURCE]

This is exactly what the fungus gnats are looking for. After a round of courtship and mating, the fungus gnats set to work laying eggs on the tip of the spadix. Apparently the tactile cues are so similar to that of a mushroom that the fungus gnats simply don’t realize that they are falling victim to a ruse. Upon hatching, the fungus gnat larvae will not be greeted with a mushroomy meal. Instead, they will starve and die within the wilting inflorescence. The job of the adult fungus gnats is not over at this point. To achieve pollination, the plant must trick them into contacting the flowers themselves.

Both male and female flowers are located down at the base of the structure. As you can see in the pictures, the inflorescence is two-toned - dark brown on top and translucent white on the bottom. The flowers just so happen to sit nicely within the part of the spathe that is white in coloration. In making a bid to escape post-mating, the fungus gnats crawl/fly towards the light. However, because the opening in the spathe points downward, the lighted portion of the structure is down at the bottom with the flowers.

The leaves are the best way to locate these plants. Photo by Meneerke bloem licensed under CC BY-SA 4.0

The leaves are the best way to locate these plants. Photo by Meneerke bloem licensed under CC BY-SA 4.0

Confused by this, the fungus gnats dive deeper into the inflorescence and that is when they come into contact with the flowers. Male and female flowers of the mouse plants mature at the exact same time. That way, if visiting fungus gnats happen to be carrying pollen from a previous encounter, they will deposit it on the female flowers and pick up pollen from the male flowers all at once. It has been noted that very few fungus gnats have ever been observed within the flower at any given time so it stands to reason that with a little extra effort, they are able to escape and with any luck (for the plant at least) will repeat the process again with neighboring individuals.

The mouse plant does not appear to be self-fertile so only pollen from unrelated individuals will successfully pollinate the female flowers. This can be a bit of an issue thanks to the fact that plants also reproduce vegetatively. Large mouse plant populations are often made up of clones of a single individual. This may be why rates of sexual reproduction in the wild are often as low as 10 - 20%. Still, it must work some of the time otherwise how would such a sophisticated form of pollination syndrome evolve in the first place.

Photo Credit: [1] [2] [3]

Further Reading: [1] [2]

This Isn't Even My Final Form! A Pothos Story

Photo by Forest and Kim Starr licensed under CC BY 2.0

Photo by Forest and Kim Starr licensed under CC BY 2.0

Pothos might be one of the most widely cultivated plants in modern history. These vining aroids are so common that I don't think I can name a single person in my life that hasn't had one in their house at some point or another. Renowned for their hardy disposition and ability to handle extremely low light conditions, they have become famous the world over. They are so common that it is all too easy to forget that they have a wild origin. What's more, few of us ever get to see a mature specimen. The plants living in our homes and offices are mere juveniles, struggling to hang on as they search for a canopy that isn't there.

Trying to find information on the progenitors of these ubiquitous houseplants can be a bit confusing. To do so, one must figure out which species they are talking about. Without a proper scientific name, it is nearly impossible to know which plant to refer to. Common names aside, pothos have also undergone a lot of taxonomic revisions since their introduction to the scientific community. Also, what was thought to be a single species is actually a couple.

Photo by Forest and Kim Starr licensed under CC BY 2.0

Photo by Forest and Kim Starr licensed under CC BY 2.0

To start with, the plants you have growing in your home are no longer considered Pothos. The genus Pothos seemed to be a dumping ground for a lot of nondescript aroid vines throughout the last century. Many species were placed there until proper materials were thoroughly scrutinized. Today, what we know as a "Pothos" has been moved into the genus Epipremnum. This revision did not put all controversies to rest, however, as the morphological changes these plants go through as they age can make things quite tricky.

Photo by Tauʻolunga licensed under CC BY-SA 3.0

Photo by Tauʻolunga licensed under CC BY-SA 3.0

As I mentioned, the plants we keep in our homes are still in their juvenile form. Like all plants, these vines start out small. When they find a solid structure in a decent location, they make their bid for the canopy. Up in a tree in reach of life giving sunlight, these vines really hit their stride. They quickly grow their own version of a canopy that consists of massive leaves nearing 2 feet in length! This is when these plants begin to flower. 

As is typical for the family, the inflorescence consists of a spadix covered by a leafy spathe. The spadix itself is covered in minute flowers and these are the key to properly identifying species. When pothos first made its way into the hands of botanists, all they had to go on were the small, juvenile leaves. This is why their taxonomy had been such a mess for so long. Materials obtained in 1880 were originally named Pothos aureus. It was then moved into the genus Scindapsus in 1908.

Controversy surrounding a proper generic placement continued throughout the 1900's. Then, in the early 1960's, an aroid expert was finally able to get their hands on an inflorescence. By 1964, it was established that these plants did indeed belong in the genus Epipremnum. Sadly, confusion did not end there. The plasticity in forms and colors these vines exhibit left many confusing a handful of species within the group. At various times since the late 1960's, E. aureum and E. pinnatum have been considered two forms of the same species as well as two distinct species. The latest evidence I am aware of is that these two vines are in fact distinct enough to warrant species status. 

Photo by Mokkie licensed under CC BY-SA 3.0

Photo by Mokkie licensed under CC BY-SA 3.0

The plant we most often encounter is E. aureum. Its long history of following humans wherever they go has led to it becoming an aggressive invader throughout many regions of the world. It is considered a noxious weed in places like Australia, Southeast Asia, India, Pakistan, and Hawai'i (just to name a few). It does so well in these places that it has been a little difficult to figure out where these plants originated. Thanks to some solid detective work, E. aureum is now believed to be native to Mo'orea Island off the west coast of French Polynesia. 

Epipremnum pinnatum is similar until you see an adult plant. Photo by Mokkie licensed under CC BY-SA 3.0

Epipremnum pinnatum is similar until you see an adult plant. Photo by Mokkie licensed under CC BY-SA 3.0

It is unlikely that most folks have what it takes to grow this species to its full potential in their home. They are simply too large and require ample sunlight, nutrients, and humidity to hit their stride. Nonetheless there is something to be said for the familiarity we have with these plants. They have managed to enthrall us just enough to be a fixture in so many homes, offices, and shopping centers. It has also helped them conquer far more than the tiny Pacific island on which they evolved. Becoming an invasive species always seems to have a strong human element and this aroid is the perfect example.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]