Insect Egg Killers

© Copyright Walter Baxter and licensed under CC BY-SA 2.0

© Copyright Walter Baxter and licensed under CC BY-SA 2.0

Plants and herbivores are engaged in an evolutionary arms race hundreds of millions of years in the making. As plants evolve mechanisms to avoid being eaten, herbivores evolve means of overcoming those defenses. Our understanding of these dynamics is vast but largely focused on the actual act of an organism consuming plant tissues. However, there is growing evidence that plants can take action against herbivores before they are even born.

Taking out herbivores before they even have a chance to munch on a plant seems like a pretty effective means of defense. Indeed, for a growing number of plant species, this starts with the ability to detect insect eggs deposited on or in leaves and stems. As Griese and colleagues put it in their 2020 paper, “Every insect egg being detected and killed, is one less herbivorous larva or adult insect feeding on the plant in the near future.” Amazingly, such early detection and destruction has been found in a variety of plant lineages from conifers to monocots and eudicots.

Gumosis in cherries is a form of defense. Photo by Rosser1954/Public Domain

Gumosis in cherries is a form of defense. Photo by Rosser1954/Public Domain

There are a few different ways plants go about destroying the eggs of herbivores. For instance, upon detecting eggs on their leaves, some mustards will begin to produce volatile compounds that attract parasitoid wasps that lay their eggs on or in the herbivore’s eggs. For other plants, killing herbivore eggs involves the production of special egg-killing compounds. Research on cherry trees (Prunus spp.) has shown that as cicadas push their ovipositor into a twig, the damage induces the production of a sticky gum that floods the egg chamber and prevents the eggs from hatching. Similarly, resin ducts full of insect-killing compounds within the rinds of mangoes will rupture when female flies insert their ovipositor, killing any eggs that are deposited within.

One of the coolest and, dare I say, most badass ways of taking out herbivore eggs can be seen in a variety of plants including mustards, beans, potatoes, and even relatives of the milkweeds and involves a bit of sacrifice on the plant end of things. Upon detecting moth or butterfly eggs, leaf cells situated directly beneath the eggs initiate a defense mechanism called the “hypersensitive response.” Though normally induced by pathogenic microbes, the hypersensitive response appears to work quite well at killing off any eggs that are laid.

“Leaves from B. nigra treated with egg wash of different butterfly species and controls inducing or not a HR-like necrosis. Pieris brassicae (P. b.), P. mannii, (P. m.), P. napi (P. n.), and P. rapae (P. r.) and Anthocharis cardamines (A. c.) induce…

“Leaves from B. nigra treated with egg wash of different butterfly species and controls inducing or not a HR-like necrosis. Pieris brassicae (P. b.), P. mannii, (P. m.), P. napi (P. n.), and P. rapae (P. r.) and Anthocharis cardamines (A. c.) induce a strong HR-like necrosis. Egg wash of G. rhamni (G. r.) and Colias sp. (C. sp.) induces a very faint response resembling a chlorosis and does not fit into the established scoring system (faintness indicates 1, but showing up on both sides of the leaf indicates 2).” [SOURCE]

Once eggs are detected, a signalling pathway within the leaf ramps up the production of highly reactive molecules called reactive oxygen species. These compounds effectively kill all of the cells upon which the butterfly eggs sit. The death of those plant cells is thought to change the microclimate directly around the eggs, causing them to either dry up or fall off. These forms of plant defense don’t stop once the eggs have been killed either. There is evidence to suggest that the hypersensitive response to insect eggs also induces these plants to begin producing even more anti-feeding compounds, thus protecting the plants from any herbivores that result from any eggs that weren’t killed.

Plants may be sessile but they are certainly not helpless. Defense mechanisms like these just go to show you how good plants can be at protecting themselves. Certainly, the closer we look at interactions like these, the more we will discover about the amazing world of plant defenses.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

A Tree That Makes Poisonous Rats

Acokanthera_schimperi_-_Köhler–s_Medizinal-Pflanzen-150.jpg

For many organisms, poisons are an effective means to keep from being eaten. However, making poisons can be costly. Depending on the compounds involved, poison synthesis can require a lot of nutrients that could be directed elsewhere. This is why some animals acquire poisons through their diet. Take, for instance, the monarch butterfly. As its caterpillars feed on milkweed, they sequester the milkweed toxins in their tissues, which makes them unpalatable into adulthood. Cases like this abound in the invertebrate world, but recently scientists have confirmed that at least one mammal has evolved a similar strategy.

Meet the African crested rat (Lophiomys imhausi). Its large size and bold color patterns make it look like the result of a passionate encounter between a porcupine and a skunk. However, it is 100% rat and it has a fascinating defense strategy that begins with a tree native throughout parts of eastern Africa aptly referred to as the poison arrow tree (Acokanthera schimperi).

An African crested rat displaying its crest of toxic hairs and aposematic color pattern. [SOURCE]

An African crested rat displaying its crest of toxic hairs and aposematic color pattern. [SOURCE]

The poison arrow tree is a member of the milkweed family (Apocynaceae), and like many of its relatives, this species produces potent toxins that can cause heart failure. The toxic nature of this tree has not been lost on humans. In fact, the particular strain of toxin it produces is referred to as ouabaïne or “arrow poison” as indigenous peoples have been coating their arrows with its sap for millennia. It turns out that humans aren’t the only mammals to find use for this sap either. The African crested rat uses it too.

The African crested rat grows highly specialized crest of hairs along its back. These hairs are thick and porous and when the rat feels threatened, it erects the crest and shows off its stark black and white coloring. It has been noted in the past that predators such as dogs that try to eat the rat run the risk of collapsing into convulsions and dying so the idea was put forth that that crest of hairs was toxic. Only recently has this been confirmed.

By studying a group of these rodents, scientists observed an interesting behavior. Many of the rats in their study would chew and lick twigs and branches of the poison arrow tree and then chew and lick their crest. What this behavior does is transfer the plant toxins onto those specialized hairs. The high surface area of each hair means they can soak up a lot of the toxins. Surprisingly, the rats appear to be resistant to the sap’s toxic effects. Perhaps they possess modified sodium pumps in their heart muscles that counter the effects of the toxin. Or, they may possess a highly specialized gut flora that breaks down the toxins. Either way, the rats do not show any signs of poisoning from this behavior.

A close-up view of the African crested rat’s poison anointed hairs. Photo by Sara B. Weinstein

A close-up view of the African crested rat’s poison anointed hairs. Photo by Sara B. Weinstein

The rats don’t have to do this very often to remain poisonous. By talking with locals that still use the poison arrow tree sap on their arrows, researchers learned that the compounds are extremely stable. Once coated, arrows will remain toxic for years. As such, the African crested rat likely doesn’t need constant application for this defense mechanism to remain effective.

As far as we know, this is the first example of a mammal sequestering plant toxins as a form of defense. It is amazing to think that a defense strategy evolved by a plant to avoid being eaten can be co-opted by a rat so that it too can avoid being eaten. Sadly, it is feared that this unique relationship between rat and tree is starting to disappear. Though more research is needed to accurately assess their numbers, there is growing evidence that African crested rats are on the decline. Hopefully with a bit more attention, these trends can be properly assessed and conservation measures can be put into place. In the meantime, please avoid putting any and all rats in your mouth.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1]





Corn Lilies, Cyclops Lambs, and Sonic the Hedgehog

Photo by Judy Gallagher licensed by cc-by-2.0

Photo by Judy Gallagher licensed by cc-by-2.0

1957 was an alarming year for Idaho ranchers. Some herds of sheep were giving birth to lambs with severe deformities. The lambs simply weren’t developing right. They emerged from the womb sporting limbs from their heads, incomplete brains, and some of them had only a single, malformed eye in the middle of their face. It would take over a decade before the cause of these deformities was identified and another two decades before we knew why it happened. The first line of evidence came from the weather patterns during that fateful year.

In an average year, sheep usually find enough forage at lower elevations. With plenty of rain keeping plants happy and lush, the sheep don’t have to travel far to find food. Things change during severe droughts. As droughts worsen, plants at lower elevations start to disappear. To find enough food, sheep will move up in elevation where plants are not yet affected by drought. However, the move up slope coincides with a change in the presence and abundance of some plant species. Notably, species like the corn lily (Veratrum californicum) are more prevalent at higher elevations.

Photo by Clint Gardner licensed by CC BY-NC-SA 2.0

Photo by Clint Gardner licensed by CC BY-NC-SA 2.0

Now if there is one common thread that winds its way through the genus Veratrum, it’s the fact that all members produce some seriously potent alkaloid compounds. Though toxicity can vary from species to species, it is a safe bet that most Veratrum can harm you if ingested during their active growing period. However, despite the fact that all parts of Veratrum are toxic, it appears that these Idaho sheep were a bit desperate. It was discovered that during the drought of 1957, some sheep were feeding on the flowers of the V. californicum.

A deformed lamb showing the single, malformed eye and the anomalous limbs.

A deformed lamb showing the single, malformed eye and the anomalous limbs.

The flowers themselves aren’t the most toxic part of the plant but they produce measurable levels of toxic alkaloids. After 11 years of studying these malformed sheep, scientists realized that although pregnant sheep could feed on the flowers of V. californicum with no ill effects, they would go on to give birth to the deformed lambs. It became readily apparent that the deformities found in these lambs could be traced back to the consumption of V. californicum.

However, this was not case closed. The ranchers learned that they must keep their sheep away from Veratrum but no one had any idea as to how eating these plants led to such horrible birth defects. It took 25 more years before scientists had that answer.

While studying embryonic development in fruit flies, researchers discovered a set of genes that, when deactivated, cause the flies to grow spiny hairs all over their body. They named this gene “Sonic Hedgehog” after the spiky blue video game character. It turns out that the Sonic Hedgehog gene was extremely important in the development of more organisms than just flies. Importantly, these genes control the way in which the body plan of an organism develops. When something goes wrong with the Sonic Hedgehog pathway, a whole slew of deformities follow. Among these is the development of a single, malformed eye on the middle of the mammalian head.

Luckily, researchers studying Sonic Hedgehog remembered the story of the cyclops sheep in Idaho. It didn’t take long to put the puzzle pieces together. It was soon realized that V. californicum produces one alkaloid in particular that interferes with Sonic Hedgehog. The compound was given the name “Cyclopamine” as a reference to the deformities is caused in those sheep back in 1957. Scientists finally had the smoking gun.

The molecular structure of Cyclopamine

The molecular structure of Cyclopamine

When droughts caused sheep to moved into the mountains in search of plants to munch, some of them would nibble on the flowers of V. californicum. If they were pregnant at the time, enough Cyclopamine made it into their system that it would shut down the Sonic Hedgehog gene pathway in their developing offspring. Once that pathway is shut down, the embryo no longer has a sound blueprint for development and all of those horrendous deformities take place.

The story does not end here. Not only was a 30+ year mystery solved, scientists had come away with a far more detailed understanding embryonic development. They also walked away with some new ideas to test. The most exciting of these involves cancer treatments. It turns out, the Sonic Hedgehog pathway is one of the many pathways involved in a couple different kinds of cancer. Normally, Sonic Hedgehog is dormant in adults but certain circumstances can see it reactivate and go into overdrive, leading to cancerous tumors. Some scientists are now using Cyclopamine to turn off the Sonic Hedgehog pathway in those tumors as a form of cancer treatment.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

Giant Hogweed And Other Toxic Plants

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Everybody run, giant hogweed is coming! I am sure by now, many of you reading this will have picked up a story or two about a nasty invasive plant that will render you blind and nursing third degree burns. Indeed, giant hogweed (Heracleum mantegazzianum) is a plant worth learning how to identify. However, the tone of these articles is often one of hysterics, leaving the reader feeling like this plant is more like a Triffid, actively uprooting itself to hunt down unwary humans. Is giant hogweed worth all of this anxiety?

runaway.gif

Let's start with the plant itself. Giant hogweed is a member of the carrot family (Apiaceae). Its native range encompasses much of the Caucasus region and into parts of central Asia. It was (and probably still is in some areas) considered a wonderfully large and unique addition to a temperate garden. And large it is. Individual plants regularly reach heights of 6 feet (2 m) or more and some records indicate that individuals over 10 feet (3 m) in height are not unheard of.

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Because it was once a popular garden plant, this species has been introduced far outside of its native range. For many decades, giant hogweed probably lurked in the background unnoticed, its seeds finding favorable spots for germination among other weedy plants along roadsides, fallow fields, and abandoned lots. In the last few years it has grown harder to ignore. More and more plants are showing up where they shouldn't. Indeed, it seems that giant hogweed is yet another invasive species we need to get on top of. But what about all of that panic? Certainly its invasive status alone isn't what all the hype is about.

Well, like all members of the carrot family, giant hogweed produces an impressive array of chemical compounds. Many of these compounds serve to protect the plants from hungry herbivores and a plethora of microbial infections. Some of the compounds in the giant hogweed arsenal are a group known as the furocoumarins. These compounds defend the plant in a rather alarming way. These furocoumarins are phototoxic, which means when the sap gets on the body of an animal and is exposed to sunlight, they cause severe chemical burns.

Stories of people being hospitalized due to an unfortunate run in with this plant make headlines wherever it pops up. That being said, simply touching the plant isn't going to hurt you. The chemicals are sloshing around in the sap of giant hogweed and the plant needs to be injured in some way before they will leak out onto whatever is hurting it. For humans, this usually occurs while mowing or weed whacking, or if a child mistakenly uses the hollow stem as a pea shooter.

With stories like this floating around, it is no wonder then why people get so upset when this plant shows up. However, I can't help but feel that this is being fed on a bit by media fear-mongering. It is worth putting giant hogweed into some practical context. It may actually alarm you to know just how many plants on the landscape have the ability to cause you harm if handled the wrong way.

Wild parsnip (Pastinaca sativa). Photo by USFWS Midwest Region

Wild parsnip (Pastinaca sativa). Photo by USFWS Midwest Region

Even hogweeds less robust relatives are capable of causing phototoxic reactions. I once weed whacked a large patch of Queen Anne's lace (Daucus carota) and wild parsnip (Pastinaca sativa) and ended up covered in nasty blisters the next day. I recovered but I sure did learn to give those two species more respect whenever I encountered them. Plants like poison ivy, oak, and sumac certainly cause their fair share of misery but even these do not get the sort of media attention that giant hogweed does.

Even more interesting are some of the species we actively plant in our gardens. For instance, castor bean (Ricinus communis) is quite popular among gardeners and it is responsible for producing ricin, a protein with enough killing power to bring down an adult human many times over. Take a bite out of the castor bean in your garden and it will be the last thing you ever eat. Even more potent than ricin is aconitine, an alkaloid produced by beloved garden plants like the monkshoods (Aconitum spp.) and the larkspurs (Delphinium spp.). This powerful alkaloid causes your nervous system to endlessly fire, leading to convulsions and death.

Castor bean (Ricinus communis). Photo by Jason Hollinger licensed under CC BY 2.0

Castor bean (Ricinus communis). Photo by Jason Hollinger licensed under CC BY 2.0

Similarly, a few different species of Datura are commonly grown around the world. Datura posioning is nothing to mess with and symptoms include "a complete inability to differentiate reality from fantasy; hyperthermia; tachycardia; bizarre, and possibly violent behavior; and severe mydriasis (dilated pupils) with resultant painful photophobia that can last several days." Even plants we grow for food can hurt us in bad ways. Most members of the tomato family produce a multitude of toxic alkaloids like solanine. That is why only ripe tomatoes and eggplants should ever be consumed.

Jimsonweed (Datura stramonium). Photo by Al_HikesAZ licensed under CC BY-NC 2.0

Jimsonweed (Datura stramonium). Photo by Al_HikesAZ licensed under CC BY-NC 2.0

In reality, I could devote an entire blog and podcast series to the chemical warfare plants have taken up during their long and complicated evolutionary history. Long story short, plants are sessile organisms that must defend themselves in order to survive and toxic chemicals are really great means to do just that. The reality is that we welcome many toxic and potentially harmful plants (both knowingly and unknowingly) into our lives and it seems slightly odd that species like giant hogweed warrant such fervor from media outlets. That being said, it is important to treat these plants with the respect they deserve. Don't bother them and they won't bother you.

So, is giant hogweed coming to attack you and your family? No. Is giant hogweed a plant worth learning to identify? Yes. Is giant hogweed dangerous to humans? Yes, but only under certain conditions.

Plants like giant hogweed are the perfect reminder as to why we must give plants more respect in our society. Teaching friends and family which plants can feed them and which plants can hurt them is something everyone should invest some time in doing. If you find giant hogweed in your area and you do not live in the Caucasus or central Asia, don't be a hero. Call a professional to come and deal with it. Otherwise, stay calm and keep on botanizing. Giant hogweed is not out to get you.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3]