Insect Egg Killers

© Copyright Walter Baxter and licensed under CC BY-SA 2.0

© Copyright Walter Baxter and licensed under CC BY-SA 2.0

Plants and herbivores are engaged in an evolutionary arms race hundreds of millions of years in the making. As plants evolve mechanisms to avoid being eaten, herbivores evolve means of overcoming those defenses. Our understanding of these dynamics is vast but largely focused on the actual act of an organism consuming plant tissues. However, there is growing evidence that plants can take action against herbivores before they are even born.

Taking out herbivores before they even have a chance to munch on a plant seems like a pretty effective means of defense. Indeed, for a growing number of plant species, this starts with the ability to detect insect eggs deposited on or in leaves and stems. As Griese and colleagues put it in their 2020 paper, “Every insect egg being detected and killed, is one less herbivorous larva or adult insect feeding on the plant in the near future.” Amazingly, such early detection and destruction has been found in a variety of plant lineages from conifers to monocots and eudicots.

Gumosis in cherries is a form of defense. Photo by Rosser1954/Public Domain

Gumosis in cherries is a form of defense. Photo by Rosser1954/Public Domain

There are a few different ways plants go about destroying the eggs of herbivores. For instance, upon detecting eggs on their leaves, some mustards will begin to produce volatile compounds that attract parasitoid wasps that lay their eggs on or in the herbivore’s eggs. For other plants, killing herbivore eggs involves the production of special egg-killing compounds. Research on cherry trees (Prunus spp.) has shown that as cicadas push their ovipositor into a twig, the damage induces the production of a sticky gum that floods the egg chamber and prevents the eggs from hatching. Similarly, resin ducts full of insect-killing compounds within the rinds of mangoes will rupture when female flies insert their ovipositor, killing any eggs that are deposited within.

One of the coolest and, dare I say, most badass ways of taking out herbivore eggs can be seen in a variety of plants including mustards, beans, potatoes, and even relatives of the milkweeds and involves a bit of sacrifice on the plant end of things. Upon detecting moth or butterfly eggs, leaf cells situated directly beneath the eggs initiate a defense mechanism called the “hypersensitive response.” Though normally induced by pathogenic microbes, the hypersensitive response appears to work quite well at killing off any eggs that are laid.

“Leaves from B. nigra treated with egg wash of different butterfly species and controls inducing or not a HR-like necrosis. Pieris brassicae (P. b.), P. mannii, (P. m.), P. napi (P. n.), and P. rapae (P. r.) and Anthocharis cardamines (A. c.) induce…

“Leaves from B. nigra treated with egg wash of different butterfly species and controls inducing or not a HR-like necrosis. Pieris brassicae (P. b.), P. mannii, (P. m.), P. napi (P. n.), and P. rapae (P. r.) and Anthocharis cardamines (A. c.) induce a strong HR-like necrosis. Egg wash of G. rhamni (G. r.) and Colias sp. (C. sp.) induces a very faint response resembling a chlorosis and does not fit into the established scoring system (faintness indicates 1, but showing up on both sides of the leaf indicates 2).” [SOURCE]

Once eggs are detected, a signalling pathway within the leaf ramps up the production of highly reactive molecules called reactive oxygen species. These compounds effectively kill all of the cells upon which the butterfly eggs sit. The death of those plant cells is thought to change the microclimate directly around the eggs, causing them to either dry up or fall off. These forms of plant defense don’t stop once the eggs have been killed either. There is evidence to suggest that the hypersensitive response to insect eggs also induces these plants to begin producing even more anti-feeding compounds, thus protecting the plants from any herbivores that result from any eggs that weren’t killed.

Plants may be sessile but they are certainly not helpless. Defense mechanisms like these just go to show you how good plants can be at protecting themselves. Certainly, the closer we look at interactions like these, the more we will discover about the amazing world of plant defenses.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

Dwarf Sumac: North America's Rarest Rhus

James Henderson, Golden Delight Honey, Bugwood.org.

James Henderson, Golden Delight Honey, Bugwood.org.

In honor of my conversation with Anacardiaceae specialist, Dr. Susan Pell, I wanted to dedicate some time to looking at a member of this family that is in desperate need of more attention. I would like you to meet the dwarf sumac (Rhus michauxii). Found only in a few scattered locations throughout the Coastal Plain and Piedmont regions of southeastern North America, this small tree is growing increasingly rare.

Dwarf sumac is a small species, with most individuals maxing out around 1 - 3 feet (30.5 – 91 cm) in height. It produces compound fuzzy leaves with wonderfully serrated leaflets. It flowers throughout early and mid-summer, with individuals producing an upright inflorescence that is characteristic of what one might expect from the genus Rhus. Dwarf sumac is dioecious, meaning individual plants produce either male or female flowers. Also, like many of its cousins, dwarf sumac is highly clonal, sending out runners in all directions that grow into clones of the original. The end result of this habit is large populations comprised of a single genetic individual producing only one type of flower.

Current range of dwarf sumac (Rhus michauxii). Green indicates native presence in state, Yellow indicates present in county but rare, and Orange indicates historical occurrence that has since been extirpated. [SOURCE]

Current range of dwarf sumac (Rhus michauxii). Green indicates native presence in state, Yellow indicates present in county but rare, and Orange indicates historical occurrence that has since been extirpated. [SOURCE]

Research indicates that the pygmy sumac was likely never wide spread or common throughout its range. Its dependence on specific soil conditions (namely sandy or rocky, basic soils) and just the right amount of disturbance mean it is pretty picky as to where it can thrive. However, humans have pushed this species far beyond natural tolerances. A combination of agriculture, development, and fire sequestration have all but eliminated most of its historical occurrences.

Today, the remaining dwarf sumac populations are few and far between. Its habit of clonal spread complicates matters even more because remaining populations are largely comprised of clonal offshoots of single individuals that are either male or female, making sexual reproduction almost non-existent in most cases. Also, aside from outright destruction, a lack of fire has also been disastrous for the species. Dwarf sumac requires fairly open habitat to thrive and without regular fires, it is readily out-competed by surrounding vegetation.

A female infructescence. Photo by Alan Cressler.

A female infructescence. Photo by Alan Cressler

Luckily, dwarf sumac has gotten enough attention to earn it protected status as a federally listed endangered species. However, this doesn’t mean all is well in dwarf sumac land. Lack of funding and overall interest in this species means monitoring of existing populations is infrequent and often done on a volunteer basis. At least one study pointed out that some of the few remaining populations have only been monitored once, which means it is anyone’s guess as to their current status or whether they still exist at all. Some studies also indicate that dwarf sumac is capable of hybridizing with related species such as whinged sumac (Rhus copallinum).

Another complicating factor is that some populations occur in some surprisingly rundown places that can make conservation difficult. Because dwarf sumac relies on disturbance to keep competing vegetation at bay, some populations now exist along highway rights-of way, roadsides, and along the edges of artificially maintained clearings. While this is good news for current population numbers, ensuring that these populations are looked after and maintained is a difficult task when interests outside of conservation are involved.

Some of the best work being done to protect this species involves propagation and restoration. Though still limited in its scope and success, out-planting into new location in addition to augmenting existing populations offers hope of at least slowing dwarf sumac decline in the wild. Special attention has been given to planting genetically distinct male and female plants into existing clonal populations in hopes of increasing pollination and seed set. Though it is too early to count these few attempts as true successes, they do offer a glimmer of hope. Other conservation attempts involve protecting what little habitat remains for this species and encouraging better land management via prescribed burns and invasive species removal.

The future for dwarf sumac remains uncertain, but that doesn’t mean all hope is lost. With more attention and research, this species just may be saved from total destruction. The plight of species like the dwarf sumac serve as an important reminder of why both habitat conservation and restoration are so important for slowing biodiversity loss.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]James Henderson, Golden Delight Honey, Bugwood.org.

In Defense of Plants Book Coming February 2021!

IDOPIG1.jpg

I am extremely excited to announce that I have written a book! In Defense of Plants: An Exploration Into the Wonder of Plants is slated for release on February 16th, 2021 wherever books are sold.

In Defense of Plants changes your relationship with the world from the comfort of your windowsill.

The ruthless, horny, and wonderful nature of plants. Understand how plants evolve and live on Earth with a never-before-seen look into their daily drama. Inside, Candeias explores the incredible ways plants live, fight, have sex, and conquer new territory. Whether a blossoming botanist or a professional plant scientist, In Defense of Plants is for anyone who sees plants as more than just static backdrops to more charismatic life forms.

In this easily accessible introduction to the incredible world of plants, you'll find:

  • Fantastic botanical histories and plant symbolism

  • Passionate stories of flora diversity and scientific names of plant organisms

  • Personal tales of discovery through the study of plants

If you enjoyed books like The Botany of Desire, What a Plant Knows, or The Soul of an Octopus, then you'll love In Defense of Plants.

You can pre-order In Defense of Plants here:

Amazon- https://amzn.to/3mBA1Ov

Bookshop- https://bit.ly/3lxih5B

Barnes and Noble- https://bit.ly/3qpE570

Early Spring Botanizing

SURPRISE!

Many have commented that a video component was lacking from the hiking podcasts. I have teamed up with filmmaker/producer Grant Czadzeck (www.grantczadzeck.com) to bring you a visual botanizing experience. I'm not sure how regular this will become but let us know what you think. In the mean time, please enjoy this early spring hike in central Illinois.

A North American Cycad and its Butterfly

Photo by andy_king50 licensed under CC BY-SA 3.0

Photo by andy_king50 licensed under CC BY-SA 3.0

Most of us here in North America probably know cycads mainly from those encountered in botanical gardens or as the occasional houseplant. However, if you want to see a cycad growing in the wild, you don't have to leave North America to do so. One must only travel to parts of Georgia and Florida where the coontie can be found growing in well drained sandy soils. 

Known scientifically as Zamia integrifolia, the coontie is a cycad on a small scale. Plants are either male or female and both are needed for viable seed production. Here in the United States, the coontie is considered near threatened. Decades of habitat destruction and poaching have caused serious declines in wild populations. This has come at a great cost to at least one other organism as well.

Photo by James St. John licensed under CC BY 2.0

Photo by James St. John licensed under CC BY 2.0

Thought to be extinct for over 20 years, a butterfly known as the atala (Eumaeus atala) require this lovely little cycad to complete their lifecycle. The coontie produces a toxin known as "cycasin" and, just as monarchs become rather distasteful to predators by feeding on milkweeds during their larval stage, so too do the larvae of the atala. The brightly contrasting colors of both the caterpillars and the adults let potential predators know that messing with them isn't going to be a pleasant experience. The reason for its decline in the wild is due to the loss of the coontie. 

Rediscovered only recently, populations of this lovely butterfly are starting to rebound. Caterpillars of the atala are voracious eaters and a small group of them can quickly strip a coontie of its foliage. For this reason, large populations of coontie are needed to support a viable breeding population of the atala. The coontie is becoming a popular choice for landscaping, especially in suburban areas of southeastern Florida, which is good news for the atala. As more and more people plant coonties on their property, more and more caterpillars are finding food to eat. This just goes to show you the benefits of planting natives!

An atala caterpillar and chrysalis. Photo by Monica R. licensed under CC BY 2.0

An atala caterpillar and chrysalis. Photo by Monica R. licensed under CC BY 2.0



Further Reading: [1] [2] [3]