Insect Egg Killers

© Copyright Walter Baxter and licensed under CC BY-SA 2.0

© Copyright Walter Baxter and licensed under CC BY-SA 2.0

Plants and herbivores are engaged in an evolutionary arms race hundreds of millions of years in the making. As plants evolve mechanisms to avoid being eaten, herbivores evolve means of overcoming those defenses. Our understanding of these dynamics is vast but largely focused on the actual act of an organism consuming plant tissues. However, there is growing evidence that plants can take action against herbivores before they are even born.

Taking out herbivores before they even have a chance to munch on a plant seems like a pretty effective means of defense. Indeed, for a growing number of plant species, this starts with the ability to detect insect eggs deposited on or in leaves and stems. As Griese and colleagues put it in their 2020 paper, “Every insect egg being detected and killed, is one less herbivorous larva or adult insect feeding on the plant in the near future.” Amazingly, such early detection and destruction has been found in a variety of plant lineages from conifers to monocots and eudicots.

Gumosis in cherries is a form of defense. Photo by Rosser1954/Public Domain

Gumosis in cherries is a form of defense. Photo by Rosser1954/Public Domain

There are a few different ways plants go about destroying the eggs of herbivores. For instance, upon detecting eggs on their leaves, some mustards will begin to produce volatile compounds that attract parasitoid wasps that lay their eggs on or in the herbivore’s eggs. For other plants, killing herbivore eggs involves the production of special egg-killing compounds. Research on cherry trees (Prunus spp.) has shown that as cicadas push their ovipositor into a twig, the damage induces the production of a sticky gum that floods the egg chamber and prevents the eggs from hatching. Similarly, resin ducts full of insect-killing compounds within the rinds of mangoes will rupture when female flies insert their ovipositor, killing any eggs that are deposited within.

One of the coolest and, dare I say, most badass ways of taking out herbivore eggs can be seen in a variety of plants including mustards, beans, potatoes, and even relatives of the milkweeds and involves a bit of sacrifice on the plant end of things. Upon detecting moth or butterfly eggs, leaf cells situated directly beneath the eggs initiate a defense mechanism called the “hypersensitive response.” Though normally induced by pathogenic microbes, the hypersensitive response appears to work quite well at killing off any eggs that are laid.

“Leaves from B. nigra treated with egg wash of different butterfly species and controls inducing or not a HR-like necrosis. Pieris brassicae (P. b.), P. mannii, (P. m.), P. napi (P. n.), and P. rapae (P. r.) and Anthocharis cardamines (A. c.) induce…

“Leaves from B. nigra treated with egg wash of different butterfly species and controls inducing or not a HR-like necrosis. Pieris brassicae (P. b.), P. mannii, (P. m.), P. napi (P. n.), and P. rapae (P. r.) and Anthocharis cardamines (A. c.) induce a strong HR-like necrosis. Egg wash of G. rhamni (G. r.) and Colias sp. (C. sp.) induces a very faint response resembling a chlorosis and does not fit into the established scoring system (faintness indicates 1, but showing up on both sides of the leaf indicates 2).” [SOURCE]

Once eggs are detected, a signalling pathway within the leaf ramps up the production of highly reactive molecules called reactive oxygen species. These compounds effectively kill all of the cells upon which the butterfly eggs sit. The death of those plant cells is thought to change the microclimate directly around the eggs, causing them to either dry up or fall off. These forms of plant defense don’t stop once the eggs have been killed either. There is evidence to suggest that the hypersensitive response to insect eggs also induces these plants to begin producing even more anti-feeding compounds, thus protecting the plants from any herbivores that result from any eggs that weren’t killed.

Plants may be sessile but they are certainly not helpless. Defense mechanisms like these just go to show you how good plants can be at protecting themselves. Certainly, the closer we look at interactions like these, the more we will discover about the amazing world of plant defenses.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

A Tree That Makes Poisonous Rats

Acokanthera_schimperi_-_Köhler–s_Medizinal-Pflanzen-150.jpg

For many organisms, poisons are an effective means to keep from being eaten. However, making poisons can be costly. Depending on the compounds involved, poison synthesis can require a lot of nutrients that could be directed elsewhere. This is why some animals acquire poisons through their diet. Take, for instance, the monarch butterfly. As its caterpillars feed on milkweed, they sequester the milkweed toxins in their tissues, which makes them unpalatable into adulthood. Cases like this abound in the invertebrate world, but recently scientists have confirmed that at least one mammal has evolved a similar strategy.

Meet the African crested rat (Lophiomys imhausi). Its large size and bold color patterns make it look like the result of a passionate encounter between a porcupine and a skunk. However, it is 100% rat and it has a fascinating defense strategy that begins with a tree native throughout parts of eastern Africa aptly referred to as the poison arrow tree (Acokanthera schimperi).

An African crested rat displaying its crest of toxic hairs and aposematic color pattern. [SOURCE]

An African crested rat displaying its crest of toxic hairs and aposematic color pattern. [SOURCE]

The poison arrow tree is a member of the milkweed family (Apocynaceae), and like many of its relatives, this species produces potent toxins that can cause heart failure. The toxic nature of this tree has not been lost on humans. In fact, the particular strain of toxin it produces is referred to as ouabaïne or “arrow poison” as indigenous peoples have been coating their arrows with its sap for millennia. It turns out that humans aren’t the only mammals to find use for this sap either. The African crested rat uses it too.

The African crested rat grows highly specialized crest of hairs along its back. These hairs are thick and porous and when the rat feels threatened, it erects the crest and shows off its stark black and white coloring. It has been noted in the past that predators such as dogs that try to eat the rat run the risk of collapsing into convulsions and dying so the idea was put forth that that crest of hairs was toxic. Only recently has this been confirmed.

By studying a group of these rodents, scientists observed an interesting behavior. Many of the rats in their study would chew and lick twigs and branches of the poison arrow tree and then chew and lick their crest. What this behavior does is transfer the plant toxins onto those specialized hairs. The high surface area of each hair means they can soak up a lot of the toxins. Surprisingly, the rats appear to be resistant to the sap’s toxic effects. Perhaps they possess modified sodium pumps in their heart muscles that counter the effects of the toxin. Or, they may possess a highly specialized gut flora that breaks down the toxins. Either way, the rats do not show any signs of poisoning from this behavior.

A close-up view of the African crested rat’s poison anointed hairs. Photo by Sara B. Weinstein

A close-up view of the African crested rat’s poison anointed hairs. Photo by Sara B. Weinstein

The rats don’t have to do this very often to remain poisonous. By talking with locals that still use the poison arrow tree sap on their arrows, researchers learned that the compounds are extremely stable. Once coated, arrows will remain toxic for years. As such, the African crested rat likely doesn’t need constant application for this defense mechanism to remain effective.

As far as we know, this is the first example of a mammal sequestering plant toxins as a form of defense. It is amazing to think that a defense strategy evolved by a plant to avoid being eaten can be co-opted by a rat so that it too can avoid being eaten. Sadly, it is feared that this unique relationship between rat and tree is starting to disappear. Though more research is needed to accurately assess their numbers, there is growing evidence that African crested rats are on the decline. Hopefully with a bit more attention, these trends can be properly assessed and conservation measures can be put into place. In the meantime, please avoid putting any and all rats in your mouth.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1]





Australia's Stinging Trees Use Animal-Like Venom to Protect Themselves

Photo by o2elot licensed under CC BY-SA 2.0

Photo by o2elot licensed under CC BY-SA 2.0

Australia’s stinging trees (genus Dendrocnide) are no ordinary members of the nettle family (Urticaceae). Whereas a physical encounter with most of their cousins will leave you with a mild burning sensation that usually subsides within a few hours, coming into contact with a stinging tree can leave you with excruciating pain that can last for days. Such a severe reaction to stinging trees has left scientists wondering what is going on chemically that makes these trees so darn painful.

It turns out that the stinging trees have evolved chemical defenses that are surprisingly similar to the venom produced by some spiders. The discovery of these chemicals within the stinging hairs of stinging trees is a first for the plant kingdom and likely represent a remarkable case of convergent evolution.

The structure model of stinging tree venom (left) and the stinging trichomes of D. excelsa (right). [SOURCE]

The structure model of stinging tree venom (left) and the stinging trichomes of D. excelsa (right). [SOURCE]

Stinging tree venom belongs to a class of compounds known as neurotoxins. Their molecular structure looks a lot like a 3D version of a frustrated scribble on a piece of paper. This convoluted structure just so happens to target mammalian pain receptors with high affinity. Once attached, they activate the sensory neurons, forcing them into overdrive. This is why the pain is so severe.

The petioles of D. excelsa are covered in stinging hairs (top). Scanning electron micrograph of trichome structure on the leaf of D. moroides (bottom). [SOURCE]

The petioles of D. excelsa are covered in stinging hairs (top). Scanning electron micrograph of trichome structure on the leaf of D. moroides (bottom). [SOURCE]

This neurotoxic venom is delivered into the body thanks to the amazing anatomy of nettle trichomes. These tiny hairs are hollow and attached to the top of a sac-like structure filled with the venom. When something brushes against the hairs, the tips break off, turning them into tiny hypodermic needles. As the victim brushes across a stem or leaf, thousands of these hairs inject minutes amount of venom into the skin. Pain is soon to follow.

Amazingly, not all animals seem to be affected by the stinging trees potent venom. Plenty of creatures from insects to birds and even some mammals will feed on the leaves and fruits of these trees, all of which are covered in venom-filled trichomes. As is always the case in biology, there is no surefire way to deter all potential predators. Inevitably some organism(s) will circumvent the deterrent through evolutionary means. Nonetheless, the discovery of animal-like venom being produced by plants is remarkable and opens up new doors into the world of chemical ecology and evolution.

Photo Credits: [1] [2] [3]

Further Reading: [1]

Corn Lilies, Cyclops Lambs, and Sonic the Hedgehog

Photo by Judy Gallagher licensed by cc-by-2.0

Photo by Judy Gallagher licensed by cc-by-2.0

1957 was an alarming year for Idaho ranchers. Some herds of sheep were giving birth to lambs with severe deformities. The lambs simply weren’t developing right. They emerged from the womb sporting limbs from their heads, incomplete brains, and some of them had only a single, malformed eye in the middle of their face. It would take over a decade before the cause of these deformities was identified and another two decades before we knew why it happened. The first line of evidence came from the weather patterns during that fateful year.

In an average year, sheep usually find enough forage at lower elevations. With plenty of rain keeping plants happy and lush, the sheep don’t have to travel far to find food. Things change during severe droughts. As droughts worsen, plants at lower elevations start to disappear. To find enough food, sheep will move up in elevation where plants are not yet affected by drought. However, the move up slope coincides with a change in the presence and abundance of some plant species. Notably, species like the corn lily (Veratrum californicum) are more prevalent at higher elevations.

Photo by Clint Gardner licensed by CC BY-NC-SA 2.0

Photo by Clint Gardner licensed by CC BY-NC-SA 2.0

Now if there is one common thread that winds its way through the genus Veratrum, it’s the fact that all members produce some seriously potent alkaloid compounds. Though toxicity can vary from species to species, it is a safe bet that most Veratrum can harm you if ingested during their active growing period. However, despite the fact that all parts of Veratrum are toxic, it appears that these Idaho sheep were a bit desperate. It was discovered that during the drought of 1957, some sheep were feeding on the flowers of the V. californicum.

A deformed lamb showing the single, malformed eye and the anomalous limbs.

A deformed lamb showing the single, malformed eye and the anomalous limbs.

The flowers themselves aren’t the most toxic part of the plant but they produce measurable levels of toxic alkaloids. After 11 years of studying these malformed sheep, scientists realized that although pregnant sheep could feed on the flowers of V. californicum with no ill effects, they would go on to give birth to the deformed lambs. It became readily apparent that the deformities found in these lambs could be traced back to the consumption of V. californicum.

However, this was not case closed. The ranchers learned that they must keep their sheep away from Veratrum but no one had any idea as to how eating these plants led to such horrible birth defects. It took 25 more years before scientists had that answer.

While studying embryonic development in fruit flies, researchers discovered a set of genes that, when deactivated, cause the flies to grow spiny hairs all over their body. They named this gene “Sonic Hedgehog” after the spiky blue video game character. It turns out that the Sonic Hedgehog gene was extremely important in the development of more organisms than just flies. Importantly, these genes control the way in which the body plan of an organism develops. When something goes wrong with the Sonic Hedgehog pathway, a whole slew of deformities follow. Among these is the development of a single, malformed eye on the middle of the mammalian head.

Luckily, researchers studying Sonic Hedgehog remembered the story of the cyclops sheep in Idaho. It didn’t take long to put the puzzle pieces together. It was soon realized that V. californicum produces one alkaloid in particular that interferes with Sonic Hedgehog. The compound was given the name “Cyclopamine” as a reference to the deformities is caused in those sheep back in 1957. Scientists finally had the smoking gun.

The molecular structure of Cyclopamine

The molecular structure of Cyclopamine

When droughts caused sheep to moved into the mountains in search of plants to munch, some of them would nibble on the flowers of V. californicum. If they were pregnant at the time, enough Cyclopamine made it into their system that it would shut down the Sonic Hedgehog gene pathway in their developing offspring. Once that pathway is shut down, the embryo no longer has a sound blueprint for development and all of those horrendous deformities take place.

The story does not end here. Not only was a 30+ year mystery solved, scientists had come away with a far more detailed understanding embryonic development. They also walked away with some new ideas to test. The most exciting of these involves cancer treatments. It turns out, the Sonic Hedgehog pathway is one of the many pathways involved in a couple different kinds of cancer. Normally, Sonic Hedgehog is dormant in adults but certain circumstances can see it reactivate and go into overdrive, leading to cancerous tumors. Some scientists are now using Cyclopamine to turn off the Sonic Hedgehog pathway in those tumors as a form of cancer treatment.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

The Role of Leaf Shape on Insect Herbivory

beetle.JPG

Plants can defend themselves from herbivores in a variety of ways - thorns, spines, hairs, toxins, etc. - but have you ever considered the role of leaf shape in preventing herbivory? It’s okay if you haven’t because leaf shape rarely, if ever, makes it into conversations of plants defense. A recent experiment from Japan has changed that by demonstrating that leaf shape can actually deter a specialist leaf-rolling weevil.

Meet Apoderus praecellens, a leaf rolling weevil that specializes on a genus of mints called Isodon. To successfully reproduce, female leaf rolling weevils must roll up an Isodon leaf while laying eggs as she goes. The end result is a tiny cigar-shaped, edible nursery chamber in which her larvae will develop. The act of processing a leaf is a complex process.

Isodon trichocarpus Photo by Qwert1234 licensed by CC BY-SA 3.0

Isodon trichocarpus Photo by Qwert1234 licensed by CC BY-SA 3.0

The female weevil begins by walking along the margin of the leaf until she reaches the apex. At that point she walks sideways towards the interior of the leaf until she finds the midrib. She then turns around and walks back toward the leaf base again. She repeats these steps several times on both sides of the leaf until she is satisfied. At that point, she will take several bites out of the midrib, which causes the leaf to wilt. The wilted leaf is then much easier to manipulate and thus the rolling process begins.

In the wild, female weevils are well documented on the leaves of I. trichocarpus but not on the leaves of I. umbrosus. This is strange because not only are these plants closely related, they frequently grow in close proximity to one another. Why would the female weevils prefer one over the other? The answer appears to lie in the shape of their leaves.

Isodon trichocarpus produces non-lobed leaves whereas the leaves of I. umbrosus are deeply lobed. When presented with a choice, female weevils did indeed choose to roll I. trichocarpus leaves over those of I. umbrosus. These plants do not differ in their chemical makeup and larvae raised on both species did not differ in their health or development time. Thus, nutritional value or defense compounds don’t explain weevil preference.

leaf roll.JPG

Even more amazing is that the preferences seemed to change when I. trichocarpus leaves were cut to resemble the lobed I. umbrosus leaves. It seems that the presence of leaf lobes is the key to whether a weevil decides to lay her eggs or not. The reason for this seems to be the complex leaf inspection behavior outlined above. The deep lobes of I. umbrosus leaves disrupt the female weevils as they carry out their complex inspection process. If the females are interrupted, they rarely progress to the leaf rolling stage.

The researchers are quick to point out that leaf shape in this instance probably didn’t evolve in response to herbivory. Leaf shape is the result of a multitude of selection pressures like light availability, heat, and drought. Still, the fact that leaf shape can also influence herbivore pressure is an interesting piece to add to the puzzle. It is a great reminder that an organism’s niche comprises so much more than simply the abiotic conditions in which it lives. The niche is also the myriad biological interactions each organism undertakes.

Photo Credits: [1] [2]

Further Reading: [1]

The Dual Benefits of Smelling Like Frightened Aphids

Photo by KENPEI licensed under the GNU Free Documentation License

Photo by KENPEI licensed under the GNU Free Documentation License

If you garden, you have probably dealt with aphids. These tiny sap-suckers not only drain the plant of valuable sap, they can also serve as vectors for disease. Plants must contend with the ever-present threat of aphid infestation throughout the growing season and have evolved some amazing defenses against these insects. Recently an incredible form of defense against aphids has been described in pyrethrum (Tanacetum cinerariifolium) and it involves smelling like a frightened aphid colony.

Aphids produce their own alarm pheromones when attacked. Because aphids form large, clonal colonies, these pheromones can help warn their kin of impending doom. Other aphids will also eavesdrop on these alarm signals and will avoid settling in on plants where aphids are being attacked. Aphids aren’t the only ones honing in on these scents either. Aphid predators and parasitoids will also use these compounds to locate aphid colonies. As such, these pheromones are helpful to the host plant because it can mean a reduction in aphid numbers.

An alate (winged) green peach aphid (Myzus persicae).

An alate (winged) green peach aphid (Myzus persicae).

The selection pressured imposed by aphids on plants is so strong that it appears that at least one species of pyrethrum has actually evolved a means of producing these pheromones themselves. Pyrethrum is a member of the aster family (Asteraceae) native to southern portions of Eurasia. Like all flowering plants, its flowers are the most precious organs. They are the key to getting their genes into the next generation and therefore protecting them from herbivore damage is of utmost importance.

It has been discovered that pyrethrums produce an aphid alarm pheromone called ( E )-β-farnesene or EβF for short. The pheromone is not produced in every tissue of the plant but rather it is concentrated near the inflorescence. What’s more, pheromone production is not constant throughout the duration of flowering. Researchers found that production reaches its peak just before the inflorescence opens to reveal the flowers within.

Photo by そらみみ licensed under CC BY-SA 4.0

Photo by そらみみ licensed under CC BY-SA 4.0

The production of EβF in pyrethrum appears to serve a dual function. For starters, it actually results in reduced aphid infestation during the early stages of flowering. When the initial aphid attack begins, these insects consume some of the EβF as they feed and release it as they excrete honeydew. Other aphids detect EβF within the honeydew and will actually avoid the plant, likely due to the perception that the aphids feeding there are already under attack.

That does not mean that predators are not to be found. In fact, the other benefit of producing EβF in the inflorescence is that it appears to lure in one of the most voracious aphid predators on the planet - ladybird beetles. The ladybird beetles are able to detect EβF in the air and will come from far and wide to investigate in hopes of finding a tasty aphid meal. The ladybird beetles were most frequently found on plants during the early stages of floral development, which suggests that EβF production in the floral tissues is the main attractant.

A 7-spot ladybird beetle (Coccinella septempunctata). Photo by S. Rae licensed under CC BY 2.0

A 7-spot ladybird beetle (Coccinella septempunctata). Photo by S. Rae licensed under CC BY 2.0

Interestingly, it has been found that constant production of EβF is less effective at deterring aphids than pulses of EβF. It is thought that just as humans can get used to certain background levels of scent, so too can aphids. If aphids are exposed to high levels of EβF for long periods of time, they simply recognize it as the safe background level and will continue to feed. This may explain why pyrethrum plants only produce EβF for a short period of time during the most crucial stages of floral development. Research like this not only improves our understanding of the myriad ways in which plants defend themselves, it also offers us new avenues for researching more natural ways of defending the plants we rely on from unwanted pests.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1]


Why Are Some Plants Overcompensating?

Photo by CanyonlandsNPS licensed under public domain.

Photo by CanyonlandsNPS licensed under public domain.

Gardeners are all too familiar with herbivory. Countless times I have been awaiting a bloom to burst only to have the buds nipped off the night before they opened. While this can be devastating for many plant species (not to mention my sanity), for certain plant species, an encounter with a hungry herbivore may actually lead to an increase in reproductive fitness.

Overcompensation theory is the idea that, under certain conditions, plants can respond to herbivore damage by producing more shoots, flowers, and seeds. It goes without saying that when this idea was originally proposed in the late 80's, it was met with its fair share of skepticism. Why would a plant capable of producing more shoots and flowers wait to be damaged to do so? The answer may lie in in the realm of biological trade-offs.

Overcompensation may evolve in lineages that tend to grow in habitats where there is a "predictable" amount of herbivory in any given growing season, perhaps a region where large herbivores migrate through annually. Plants in these habitats may conserve dormant growing tips and valuable resources to be used once herbivory has occurred. Perhaps this also serves as a cue to upregulate antiherbivory compounds in new tissues. The trade-off is that the plants incur a cost in the form of fewer flowers and thus reduced reproduction when herbivory is low or absent.

Scarlet gilia (Ipomopsis aggregata). Photo by Dcrjsr licensed under CC BY 3.0

Scarlet gilia (Ipomopsis aggregata). Photo by Dcrjsr licensed under CC BY 3.0

It could also be that plants are exhibiting two different strategies - one to deal with competition and one to deal with herbivory. If herbivory is low, plants may become more competitive, thus favoring rapid vertical growth of one or a couple shoots. When herbivory is high, rapid vertical growth becomes disadventageous and overcompensatory branching and flowering can provide the higher fitness benefits.

These possibilities are not mutually exclusive. In fact, since the late 80's, experts now believe that overcompensation is not an "either/or" phenomenon but rather a spectrum of possibilities that are dictated by the conditions in which the plants are growing. Certainly overcompensation exists but which conditions favor it and which do not?

Research on scarlet gilia (Ipomopsis aggregata), a biennial native to western North America, suggests that overcompensation comes into play only when environmental conditions are most favorable. Soil nutrients seem to play a role in how well a plant can bounce back following herbivore damage. When resources are high, the results can be quite astounding. Early work on this species showed that under proper conditions, plants that were browsed by upwards of 95% produced 2.4 times as much seed as uneaten control plants. What's more, the resulting seedlings were twice as likely to survive than their uneaten counterparts.

Things change for scarlet gilia growing in poor conditions. Low resource availability appears to place limits on how much any given plant may respond to browsing. Also, herbivory can really hamper flowering time. Because scarlet gilia is pollen limited, anything that can cause a disruption in pollinator visits can have serious consequences for seed set. In at least one study, browsed plants flowered later and received fewer pollinator visits as a result.

More recent work has been able to add more nuance to the overcompensation story. For instance, experiments done on two subspecies of field gentian (Gentianella campestris), add further support to the idea that overcompensation is a matter of trade-offs. They showed that, whereas competition with neighboring plants alone could not explain the benefits of overcompensation, browsing certainly can.

Field gentian (Gentianella campestris). Photo by Joan Simon licensed under CC BY-SA 2.0

Field gentian (Gentianella campestris). Photo by Joan Simon licensed under CC BY-SA 2.0

Plants growing in environments where herbivory was higher overcompensated by producing more branching, more flowers, and thus more seed, all despite soil nutrients. It appears that herbivory is the strongest predictor of overcompensation for this gentian. What's more, when these data were fed into population models, only the plants that responded to herbivory by overcompensation were predicted to show any sort of population growth in the long term.

Despite all of the interest overcompensation has recieved in the botanical literature, we are only just beginning to understand the biological mechanisms that make it possible. For starters, we know that when a dominant shoot or stem gets damaged or removed, it causes a reduction in the amount of the plant hormone auxin being produced. When auxin is removed, tiny auxiliary buds at the base of the plant are able to break dormancy and begin growing.

Removal of the dominant shoot or stem can also have major impact on the number of chromosomes present in regrowing tissues. Work on Arabidopsis thaliana revealed that when the apical meristem (main growing tip of a vertical stem) was removed, the plant underwent a process called "endoreduplication" in which the cells of the growing tissues actually duplicate their entire genome without undergoing mitosis.

Photo by Hectonichus licensed under CC BY-SA 3.0

Photo by Hectonichus licensed under CC BY-SA 3.0

Endoreduplication is a complex process with lots of biological significance but in plants it is often associated with stress responses. By duplicating the genomes of these new cells, the plants may be able to adjust more rapidly to their environment. This often manifests in changes to leaf size and shape and an uptick in plant defenses. Thus, plants may be able to fine tune the development of new tissues to overcompensate for browsing. Certainly far more work is needed to understand these mechanisms and their functions in more detail.

Overcompensation is not universal. Nonetheless, it is expected to occur in certain plants, especially those with short life cycles, and under certain environmental conditions, mainly when herbivore pressure and nutrient availability are relatively high. That being said, we still have plenty more to learn about this spectrum of strategies. When does it occur and when does it not? How common is it? What are the biological underpinnings of plants capable of overcompensation? Are some lineages more prone to overcompensation than others? Only more research can say for sure!

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

 

 

Giant Hogweed And Other Toxic Plants

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Everybody run, giant hogweed is coming! I am sure by now, many of you reading this will have picked up a story or two about a nasty invasive plant that will render you blind and nursing third degree burns. Indeed, giant hogweed (Heracleum mantegazzianum) is a plant worth learning how to identify. However, the tone of these articles is often one of hysterics, leaving the reader feeling like this plant is more like a Triffid, actively uprooting itself to hunt down unwary humans. Is giant hogweed worth all of this anxiety?

runaway.gif

Let's start with the plant itself. Giant hogweed is a member of the carrot family (Apiaceae). Its native range encompasses much of the Caucasus region and into parts of central Asia. It was (and probably still is in some areas) considered a wonderfully large and unique addition to a temperate garden. And large it is. Individual plants regularly reach heights of 6 feet (2 m) or more and some records indicate that individuals over 10 feet (3 m) in height are not unheard of.

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Photo by Jean-Pol GRANDMONT licensed under CC BY 3.0

Because it was once a popular garden plant, this species has been introduced far outside of its native range. For many decades, giant hogweed probably lurked in the background unnoticed, its seeds finding favorable spots for germination among other weedy plants along roadsides, fallow fields, and abandoned lots. In the last few years it has grown harder to ignore. More and more plants are showing up where they shouldn't. Indeed, it seems that giant hogweed is yet another invasive species we need to get on top of. But what about all of that panic? Certainly its invasive status alone isn't what all the hype is about.

Well, like all members of the carrot family, giant hogweed produces an impressive array of chemical compounds. Many of these compounds serve to protect the plants from hungry herbivores and a plethora of microbial infections. Some of the compounds in the giant hogweed arsenal are a group known as the furocoumarins. These compounds defend the plant in a rather alarming way. These furocoumarins are phototoxic, which means when the sap gets on the body of an animal and is exposed to sunlight, they cause severe chemical burns.

Stories of people being hospitalized due to an unfortunate run in with this plant make headlines wherever it pops up. That being said, simply touching the plant isn't going to hurt you. The chemicals are sloshing around in the sap of giant hogweed and the plant needs to be injured in some way before they will leak out onto whatever is hurting it. For humans, this usually occurs while mowing or weed whacking, or if a child mistakenly uses the hollow stem as a pea shooter.

With stories like this floating around, it is no wonder then why people get so upset when this plant shows up. However, I can't help but feel that this is being fed on a bit by media fear-mongering. It is worth putting giant hogweed into some practical context. It may actually alarm you to know just how many plants on the landscape have the ability to cause you harm if handled the wrong way.

Wild parsnip (Pastinaca sativa). Photo by USFWS Midwest Region

Wild parsnip (Pastinaca sativa). Photo by USFWS Midwest Region

Even hogweeds less robust relatives are capable of causing phototoxic reactions. I once weed whacked a large patch of Queen Anne's lace (Daucus carota) and wild parsnip (Pastinaca sativa) and ended up covered in nasty blisters the next day. I recovered but I sure did learn to give those two species more respect whenever I encountered them. Plants like poison ivy, oak, and sumac certainly cause their fair share of misery but even these do not get the sort of media attention that giant hogweed does.

Even more interesting are some of the species we actively plant in our gardens. For instance, castor bean (Ricinus communis) is quite popular among gardeners and it is responsible for producing ricin, a protein with enough killing power to bring down an adult human many times over. Take a bite out of the castor bean in your garden and it will be the last thing you ever eat. Even more potent than ricin is aconitine, an alkaloid produced by beloved garden plants like the monkshoods (Aconitum spp.) and the larkspurs (Delphinium spp.). This powerful alkaloid causes your nervous system to endlessly fire, leading to convulsions and death.

Castor bean (Ricinus communis). Photo by Jason Hollinger licensed under CC BY 2.0

Castor bean (Ricinus communis). Photo by Jason Hollinger licensed under CC BY 2.0

Similarly, a few different species of Datura are commonly grown around the world. Datura posioning is nothing to mess with and symptoms include "a complete inability to differentiate reality from fantasy; hyperthermia; tachycardia; bizarre, and possibly violent behavior; and severe mydriasis (dilated pupils) with resultant painful photophobia that can last several days." Even plants we grow for food can hurt us in bad ways. Most members of the tomato family produce a multitude of toxic alkaloids like solanine. That is why only ripe tomatoes and eggplants should ever be consumed.

Jimsonweed (Datura stramonium). Photo by Al_HikesAZ licensed under CC BY-NC 2.0

Jimsonweed (Datura stramonium). Photo by Al_HikesAZ licensed under CC BY-NC 2.0

In reality, I could devote an entire blog and podcast series to the chemical warfare plants have taken up during their long and complicated evolutionary history. Long story short, plants are sessile organisms that must defend themselves in order to survive and toxic chemicals are really great means to do just that. The reality is that we welcome many toxic and potentially harmful plants (both knowingly and unknowingly) into our lives and it seems slightly odd that species like giant hogweed warrant such fervor from media outlets. That being said, it is important to treat these plants with the respect they deserve. Don't bother them and they won't bother you.

So, is giant hogweed coming to attack you and your family? No. Is giant hogweed a plant worth learning to identify? Yes. Is giant hogweed dangerous to humans? Yes, but only under certain conditions.

Plants like giant hogweed are the perfect reminder as to why we must give plants more respect in our society. Teaching friends and family which plants can feed them and which plants can hurt them is something everyone should invest some time in doing. If you find giant hogweed in your area and you do not live in the Caucasus or central Asia, don't be a hero. Call a professional to come and deal with it. Otherwise, stay calm and keep on botanizing. Giant hogweed is not out to get you.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3]

The Wild World of the Creosote Bush

25774192773_b250a3d5e1_o.jpg

Apart from the cacti, the real rockstar of my Sonoran experience was the creosote bush (Larrea tridentata). Despite having been quite familiar with creosote as an ingredient, I admit to complete ignorance of the plant from which it originates. Having no familiarity with the Sonoran Desert ecosystem, I was walking into completely new territory in regard to the flora. It didn’t take long to notice creosote though. Once we hit the outskirts of town, it seemed to be everywhere.

If you are in the Mojave, Sonoran, and Chihuahuan Deserts of western North America, you are never far from a creosote bush. They are medium sized, slow growing shrubs with sprays of compact green leaves, tiny yellow flowers, and fuzzy seeds. Apparently what is thought of as one single species is actually made up of three different genetic populations. The differences between these has everything to do with chromosome counts. Populations in the Mojave Desert have 78 chromosomes, Sonoran populations have 52 chromosomes, and Chihuahuan have 26. This may have to do with the way in which these populations have adapted to the relative amounts of rainfall each of these deserts receive throughout the year, however, it is hard to say for sure.

IMG_4229.JPG

Regardless, creosote is supremely adapted to these xeric ecosystems. For starters, their branching architecture coupled with their tiny leaves are arranged so as to make the most out of favorable conditions. If you stare at these shrubs long enough, you may notice that their branches largely orient towards the southeast. Also, their leaves tend to be highly clustered along the branches. It is thought that this branching architecture allows the creosote to minimize water loss while maximizing photosynthesis.

Deserts aren’t hot 24 hours per day. Night and mornings are actually quite cool. By taking advantage of the morning sun as it rises in the east, creosote are able to open their stomata and commence photosynthesis during those few hours when evapotranspiration would be at its lowest. In doing so, they are able to minimize water loss to a large degree. Although their southeast orientation causes them to miss out on afternoon and evening sun to a large degree, the benefits of saving precious water far outweigh the loss to photosynthesis. The clustering of the leaves along the branches may also reduce overheating by providing their own shade. Coupled with their small size, this further reduces heat stress and water loss during the hottest parts of the day.

IMG_4392.JPG

Creosote also secrets lots of waxy, resinous compounds. These coat the leaves and to some extent the stems, making them appear lacquered. It is thought that this also helps save water by reducing water loss through the leaf cuticle. However, the sheer diversity of compounds extracted from these shrubs suggests other functions as well. It is likely that at least some of these compounds are used in defense. One study showed that when desert woodrats eat creosote leaves, the compounds within caused the rats to lose more water through their urine and feces. They also caused a reduction in the amount of energy the rats were able to absorb from food. In other words, any mammal that regularly feeds on creosote runs the risk of both dehydration and starvation. This isn’t the only interesting interaction that creosote as with rodents either. Before we get to that, however, we first need to discuss roots.

IMG_4189.JPG

Creosote shrubs have deep root systems that are capable of accessing soil water that more shallowly rooted plants cannot. This brings them into competition with neighboring plants in intriguing ways. When rainfall is limited, shallowly rooted species like Opuntia gain access to water before it has a chance to reach deeper creosote roots. Surprisingly this happens more often than you would think. The branching architecture of creosote is such that it tends to accumulate debris as winds blow dust around the desert landscape. As a result, the soils directly beneath creosote often contain elevated nutrients. This coupled with the added shade of the creosote canopy means that seedlings that find themselves under creosote bushes tend to do better than seedlings that germinated elsewhere. As such, creosote are considered nurse plants that actually facilitate the growth and survival of surrounding vegetation. So, if recruitment and resulting competition from vegetation can become such an issue for long term creosote survival, why then do we still so much creosote on the landscape?

IMG_4228.JPG

The answer may lie in rodents and other burrowing animals in these desert ecosystems. Take a look at the base of a large creosote and you will often find the ground littered with burrows. Indeed, many a mammal finds the rooting zone of the creosote shrub to be a good place to dig a den. When these animals burrow under shallowly rooted desert plants, many of them nibble on and disturb the rooting zones. Over the long-term, this can be extremely detrimental for the survival of shallow rooted species. This is not the case for creosote. Its roots run so deep that most burrowing animals cannot reach them. As such, they avoid most of the damage that other plants experience. This lends to a slight survival advantage for creosote at the expense of neighboring vegetation. In this way, rodents and other burrowing animals may actually help reduce competition for the creosote.

Barring major disturbances, creosote can live a long, long time. In fact, one particular patch of creosote growing in the Mojave Desert is thought to be one of the oldest living organisms on Earth. As creosote shrubs grow, they eventually get to a point in which their main stems break and split. From there, they begin producing new stems that radiate out in a circle from the original plant. These clones can go on growing for centuries. By calculating the average growth rate of these shrubs, experts have estimated that the Mojave specimen, affectionately referred to as the “King Clone,” is somewhere around 11,700 years old!

The ring of creosote that is King Clone.

The ring of creosote that is King Clone.

For creosote, its slow and steady wins the race. They are a backbone of North American desert ecosystems. Their structure offers shelter, their seeds offer food, and their flowers support myriad pollinators. Creosote is one shrub worthy of our respect and admiration.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4]

How Trees Fight Disease

27329418_10101829159766245_2047871682_o.jpg

Plants do not have immune systems like animals. Instead, they have evolved an entirely different way of dealing with infections. In trees, this process is known as the "compartmentalization of decay in trees" or "CODIT." CODIT is a fascinating process and many of us will recognize its physical manifestations.

In order to understand CODIT, one must know a little something about how trees grow. Trees have an amazing ability to generate new cells. However, they do not have the ability to repair damage. Instead, trees respond to disease and injury  by walling it off from their living tissues. This involves three distinct processes. The first of these has to do with minimizing the spread of damage. Trees accomplish this by strengthening the walls between cells. Essentially this begins the process of isolating whatever may be harming the living tissues.

This is done via chemical means. In the living sapwood, it is the result of changes in chemical environment within each cell. In heartwood, enzymatic changes work on the structure of the already deceased cells. Though the process is still poorly understood, these chemical changes are surprisingly similar to the process of tanning leather. Compounds like tannic and gallic acids are created, which protect tissues from further decay. They also result in a discoloration of the surrounding wood. 

The second step in the CODIT process involves the construction of new walls around the damaged area. This is where the real compartmentalization process begins. The cambium layer changes the types of cells it produces around the area so that it blocks that compartment off from the surrounding vascular tissues. These new cells also exhibit highly altered metabolisms so that they begin to produce even more compounds that help resist and hopefully stave off the spread of whatever microbes may be causing the injury. Many of the defects we see in wood products are the result of these changes.

CODIT.JPG

The third response the tree undergoes is to keep growing. New tissues grow around the infected compartment and, if the tree is healthy enough, will outpace further infection. You see, whether its bacteria, fungi, or a virus, microbes need living tissues to survive. By walling off the affected area and pumping it full of compounds that kill living tissues, the tree essentially cuts off the food supply to the disease-causing organism. Only if the tree is weakened will the infection outpace its ability to cope.

Of course, CODIT is not 100% effective. Many a tree falls victim to disease. If a tree is not killed outright, it can face years or even decades of repeated infection. This is why we see wounds on trees like perennial cankers. Even if the tree is able to successfully fight these repeat infections over a series of years, the buildup of scar tissues can effectively girdle the tree if they are severe enough.

CODIT is a well appreciated phenomenon. It has set the foundation for better tree management, especially as it relates to pruning. It is even helping us develop better controls against deadly invasive pathogens. Still, many of the underlying processes involved in this response are poorly understood. This is an area begging for deeper understanding.

Photo Credits: kaydubsthehikingscientist & Alex Shigo

Further Reading: [1]

Delayed Greening

11263686834_936443a5cc_b.jpg

It goes without saying that leaves are vital to the existence of any photosynthetic plant. They are, after all, the food making organs. This is why plants go to great lengths to protect them. Losing leaves can be extremely costly. One of the most intriguing methods of anti-herbivory in plants is known as delayed greening. Flushes of new growth bathed in reds, whites, and light greens can color forests from top to bottom. 

Delayed greening is a matter of resource conservation and herbivore protection. The cellular machinery that makes photosynthesis possible is costly to produce. It requires large amounts of nutrients, such as nitrogen and phosphorus, that are often in short supply. If a plant can help it, its best to avoid losing a leaf chock full of these precious materials. Delayed greening does just that. 

Photo by T.Voekler licensed under CC BY-SA 3.0

Photo by T.Voekler licensed under CC BY-SA 3.0

Essentially, the process proceeds exactly as it sounds. Young shoots and leaves gradually expand over time, becoming more green as they grow tougher and better defended. When a plant packs its leaves full of photosynthetic machinery right out of the gates, when leaves are small and tender, it runs the risk of loosing all of its investment to a hungry herbivore. In contrast, non-photosynthetic leaves are thought to be less palatable to herbivores because they simply do not have the nutritional content of photosynthetic leaves.

By delaying the development of chlorophyll until the leaf is fully expanded and a bit tougher, some plants are maximizing the chances of successfully increasing their photosynthetic capacity over time. Research has shown that plants that exhibit the delayed greening strategy experience significant reductions in the amount of herbivory over time. What they lose with the lack of photosynthesis early on they make up for in the fact that such leaves last longer.  

Photo Credits: [1] [2]

Further Reading: [1] [2] [3]

 

The Curious Case of a Dancing Plant

Plants aren't generally known for their speed. They tend to move at rates we simply can't perceive. The few species that exhibit rapid movements such as the sensitive plant (Mimosa pudica) and the Venus fly trap (Dionaea muscipula) have become quite famous as a result. Such movements happen in fits and bursts. These plants certainly cannot maintain such activity. However, there is another plant out there whose activity puts these other plants to shame.

Meet the telegraph plant. It has gone by a handful of scientific names since its discovery (Desmodium motorium, D. gyrans, Hedysarum gyrans, Codariocalyx motorius) but that's not why its famous. This Asian legume is renown for its maneuvers. Its compound leaves are surprisingly active organs. The larger terminal leaflets move up and down throughout the course of a day but its smaller lateral leaflets exhibit rhythmic movements on the scale of minutes.

Perhaps most famously, the leaflets show an increase in movement when exposed to music. Search the web and you will find lots of videos of the telegraph plant "dancing" to a variety of musical styles. Though entertaining, music is not why this plant moves. Having evolved long before music was ever invented, its movement must have its roots in something a bit more natural. However, despite how popular such motion has made this species over the past few centuries, their its function has remained a bit of a mystery.

Before we get into the theories, let's take a closer look at exactly how this plant moves. At the base of its leaflets there sits a ring of cells called the "pulvinus." They act a bit like water balloons and thanks to some dedicated work, it has been found that, when stimulated, these cells can quickly move water in and out via osmosis. This causes the cells to either swell or deflate and this is where the movement originates. Now, onto the why...

mw-fig2x.gif

A relatively recent opinion piece puts forth some of the most interesting theories on telegraph plant movement yet. The author suggests that leaflet movements are defensive in nature. They believe that the leaves could be mimicking butterfly (or some other winged arthropod movements). In doing so, it may convince gravid female insects that this individual plant is already occupied. Such strategies do indeed exist in some plant species, though via physical adornments rather than movements. Another theory this author puts forth is that their movements could also attract potential predators. By mimicking the movement of a tasty insect, it could entice birds to come in to take a closer look. Once there, they could easily find other herbivores hiding on the plant.

Another possibility related to defense is that the movements are meant to deter herbivory altogether. Studies on other plants have shown that some species can actually detect the vibrations of an insect chewing on leaves, which signals to the plant to uptick the production of defense compounds. Perhaps when sensing vibration, the telegraph plant increases its movements to knock away a hungry insect. Certainly a moving meal is less appealing than a stationary one. This is also thought to be the reason for rapid leaflet closure in sensitive plants. Hungry insects have a hard time hanging on to a plant when the leaf suddenly collapses from underneath it.

Another hypothesis is that these movements are meant to increase sun exposure. It has been discovered that far from only responding to music, the leaflets move throughout the day depending on temperature. When temperatures are low, leaflet movements are more vigorous. They eventually slow down if temperatures are high enough. This hypothesis is bolstered by the fact that movements cease once the sun goes down. In a sense, the leaflets seem to be using temperature as a means of detecting whether or not they are getting as much sun on them as possible.

In reality, it very well could be a mix of these ideas. Natural selection works like that. In the end, movement of the leaflets has certainly benefited the telegraph plant whether it be fore defense or just to take advantage of as much sun as possible. Despite centuries of popularity, this awesome little legume still has some secrets tucked away and I kind of like that about it.

NOTE: The image at the top of this page is of a time lapse and does not represent actual speed.

Photo Credit: [1]

Further Reading: [1] [2] [3] [4]

Sand Armor

Photo by Franco Folini licensed under CC BY-SA 2.0

Photo by Franco Folini licensed under CC BY-SA 2.0

Plants go through a lot to protect themselves from the hungry jaws of herbivores. They have evolved a multitude of ways in which to do this - toxins, stinging hairs, thorns, and even camouflage. And now, thanks to research by a team from UC Davis, we can add sand to this list. 

At this point you may be asking "sand?!" Stick with me here. Undoubtedly you have noticed that sticky plants often have bits of whatever substrate they are growing in stuck to their stems and leaves. You wouldn't be the first to notice this. Back in 1996 a term was coined for this very phenomenon. It has been called “psammophory,” which translates to "sand-carrying."

Over 200 species of plants hailing from 88 genera in 34 families have been identified as psammorphorous. The nature of this habit has been an object of inquiry for at least a handful of researchers over the last few decades. Hypotheses have ranged from protection from physical abrasion, reduction of water loss, reduced surface temperature, reduced solar radiation, and protection from herbivory. 

It was this last hypothesis that seemed to stick. Indeed, many plants produce crystalline structures in their tissues (phytoliths, raphides, etc., which are often silica or calcium based) to deter herbivores. Sand, being silica based, is known to cause tooth wear in humans, ungulates, and rodents. Perhaps a coating of sand is enough to drive away insects and other hungry critters looking to snack on a plant. 

By controlling the amount and color of the sand stuck to plants, the researchers were able to demonstrate that plants covered in sand were less palatable to both mammalian and insect herbivores. In total, sand-covered individuals received significantly less damage to their leaves than individuals that had their sand coat removed. By altering the color of the sand, the researchers were able to demonstrate that this was not a function of camouflage. In total, the presence of sand led to an overall increase in fitness due to a decrease in damage over time. These results are the first conclusive evidence in support of psammophory as yet another fantastic plant defense mechanism. 

Photo Credit: Franco Folini (bit.ly/1RApG1R) and Wolfram Burner (http://bit.ly/1RMNR9V)

Further Reading:
http://onlinelibrary.wiley.com/wol1/doi/10.1890/15-1696/abstract

Photo by Wolfram Burner licensed under CC BY-NC 2.0

Photo by Wolfram Burner licensed under CC BY-NC 2.0