How radioactive carbon from nuclear bomb tests can tell us what parasitic orchids are eating

Yoania japonica. Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Yoania japonica. Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Historically, non-photosynthetic plants were defined as saprotrophs. It was thought that, like fungi, such plants lived directly off of decaying materials. Advances in our understanding have since revealed that parasitic plants don’t do any of the decaying themselves. Instead, those that aren’t direct parasites on the stems and roots of other plants utilize a fungal intermediary. We call these plants mycoheterotrophs (fungus-eaters). Despite recognition of this strangely fascinating relationship, we still have much to learn about what kinds of fungi these plants parasitize and where most of the nutritional demands are coming from.

It is largely assumed that most mycoheterotrophic plants are parasitic on mycorrhizal fungi. This would make them indirect parasites on other photosynthetic plants. The mycorrhizal fungi partner with photosynthetic plants, exchanging soil nutrients for carbon made by the plant during photosynthesis. However, this is largely assumed rather than tested. New research out of Japan has shown a light on what is going on with some of these parasitic relationships and the results are a bit surprising. What’s more, the methods they used to better understand these parasitic relationships are pretty clever to say the least.

Cyrtosia septentrionalis Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Cyrtosia septentrionalis Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Photosynthesis involves the uptake of and subsequent breakdown of CO2 from the atmosphere. The carbon from CO2 is then used to build carbohydrates, which form the backbone of most plant tissues. Not all carbon is created equal, however, and by looking at ratios of different carbon isotopes in living tissues, scientists can better understand where the carbon came from. For this research, scientists utilized an isotope of carbon called 14C.

Eulophia zollingeri photo by Vinayraja licensed by CC BY-NC-SA 3.0

Eulophia zollingeri photo by Vinayraja licensed by CC BY-NC-SA 3.0

14C is special because it is not as common in our atmosphere as other isotopes of carbon such as 12C and 13C. One of the biggest sources of 14C in our atmosphere were nuclear bomb explosions. From the 1950’s until the Partial Nuclear Test Ban in 1963, atomic bomb tests were a regular occurrence. During that time period, the concentration of 14C in our atmosphere greatly increased. Any organism that was fixing carbon into its tissues during that span of time will contain elevated levels of 14C compared to the other carbon isotopes. Alternatively, anything fixing carbon today, say via photosynthesis, will have considerably reduced levels of 14C in its tissues.

Gastrodia elata Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Gastrodia elata Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

By looking at the ratios of 14C in the tissues of parasitic plants, scientists reasoned that they could assess the age of the carbon being utilized. If more 14C was present, the source of the carbon could not come from today’s atmosphere and therefore not from recent photosynthesis. Instead, it would have to come from older sources like decaying wood of long-dead trees. In other words, if parasitic plants were high in 14C, then the scientists could reasonably conclude that they were parsitizing wood-decaying saprotrophic fungi. If the plants were high in 12C or 13C, then they could conclude that they were partnering with mycorrhizal fungi instead, which were obtaining carbon from present-day photsynthesis.

The researchers looked at 10 different species of parasitic plants across Japan, most of which were orchids. They analyzed their tissues and ran analyses on the carbon molecules within. What they found is that 6 out of the 10 plants contained much higher levels of 12C and 13C in their tissues, which points to mycorrhizal fungi as their host. However, for the 4 remaining species (Gastrodia elata, Cyrtosia septentrionalis, Yoania japonica and Eulophia zollingeri), the ratios of 14C were considerably higher, meaning their host fungi were eating dead wood, not partnering with photosynthetic plants near by.

Indeed, it appears that at least some mycoheterotrophic plants are benefiting from saprotrophic rather than mycorrhizal fungi. Those early assumptions into the livelihood of such plants were not as far off the mark after all. This is very exciting research that opens the door to a much deeper understanding of some of the strangest plants on our planet.

LEARN MORE ABOUT MYCOHETEROTROPHIC PLANTS IN EPISODE 234 OF THE IN DEFENSE OF PLANTS PODCAST

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2]

Mutant Orchids Have a lot to Teach Us About Parasitic Plants

A) Albino and (B) green individual of Goodyera velutina.

A) Albino and (B) green individual of Goodyera velutina.

The botanical world is synonymous with the idea of photosynthesis. Plants take in carbon dioxide and water and utilize light to make their own food. However, not all plants make a living this way. There are many different species of plants that have evolved a parasitic lifestyle to one degree or another. Some of my favorites are those that parasitize mycorrhizal fungi. We call these plants “mycoheterotrophs” and they are fascinating to say the least. Orchids are especially prone to this strategy, with over 1% of all known species having completely lost the ability to photosynthesize.

Our knowledge of the mycoheterotrophic strategy is fragmentary at best. We still don’t fully understand things like how the plants obtain what they need from the fungus nor how they are able to maintain their parasitic lifestyle without the fungus catching on and rejecting the one-sided partnership. This is not to say we know nothing. In fact, as technologies advance, we are unlocking at least some of the mysteries of mycoheterotrophic plants. Some of the best advances come from studying mutant, albino orchids. To understand how, we have to take a closer look at the “average” orchid lifestyle.

Orchids in general make great candidates for understanding the evolution of mycoheterotrophy because all of them start their lives as parasites. Orchids produce some of the smallest seeds in the plant kingdom and without the help of mycorrhizal fungi, they would never be able to germinate. For much of their early life, orchids rely on fungi to provide them with both their mineral and carbohydrate needs. Only after the orchids are large enough to grow leaves will most of them start to give back to their fungal partners in the form of carbohydrates generated from photosynthesis.

Still, many orchids never fully let go of this parasitic lifestyle. This is especially true for orchids living under dense forest canopies. With light in limited supply, many orchids adopt a mixotrophic lifestyle. Essentially this means that although they actively photosynthesize, they nonetheless rely on fungi to provide them with both carbohydrates and minerals. Mixotrphy is likely the most wide-spread orchid strategy and it has been hypothesized that it is also the first step along the path to becoming fully parasitic. This is where the mutant orchids enter the equation.

(A) Albino and (B) green individuals of Epipactis helleborine

(A) Albino and (B) green individuals of Epipactis helleborine

Every once in a while, some orchids will germinate and grow into albino versions of their species. Without the ability to produce chlorophyll, these mutants should be destined for a quick death. Such is not the case for many of these orchids. Albino orchids often go on to live full lives, growing and flowering just like their photosynthetic progenitors. Although they do exhibit signs of reduced fitness, the fact that they are able to live at all brings up a lot of questions ready for science to tackle.

Recent investigations into the lives of these albino mutants has revealed some interesting insights into how mycoheterotrophy may have evolved in the first place. By studying the fungal partners of both healthy plants and the albinos, researchers have been able to demonstrate that albinos are doing things a bit differently than their photosynthetic parents. Using isotopes of carbon and nitrogen, scientists are discovering that the albinos have switched their interaction with the fungi in such a way that they more resemble fully mycoheterotrophic orchid species. This is done despite the fact that both albinos and their fully functional parents associate with the same guild of mycorrhizal fungi.

Another interesting difference between albinos and their photosynthetic parents is the fact that the genes involved both antioxidant metabolism and metabolite transfer (mainly carbon in this case) were more active in the albinos than they were in functioning plants. The uptick in gene functioning related to antioxidant metabolism suggests that the mutant plants are undergoing greater oxidative stress than their functional parents. This may have something to do with how the albinos are able to obtain nutrients from their fungal partners. It is thought that mycoheterotrophs actively digest parts of the fungi, which allows them to access the carbon and minerals they need to survive. This process exposes their cells to reactive oxygen compounds that can be very damaging. Antioxidants would help to reduce such damage.

The uptick in genes associated with metabolite transfer was more surprising because it suggests that despite being parasites, the plants are actively transferring substances back to the fungi. It has long been assumed that mycoheterotrophy was a one way street, with fungi transferring nutrients to plants only. These genes now suggest that, at least in some species, such transfer is a two-way street. The exact nature of this two-way transfer remains a mystery and certainly brings up many more questions that must be asked before we can better understand this relationship.

All of this is not to say that such albino mutants are fruitful “next steps” in the evolution of these species. Far from it, in fact. Two things that most albino orchid variants have in common is the fact that they are rare and, of those that have been studied, produce far fewer seeds. There are a lot of anatomical and physiological differences between true mycoheterotrophic species and albino variants and it appears that without those anatomical adaptations, the albinos are a lot less fit than their photosynthetic parents. As authors Selosse and Roy put it:

“non-chlorophyllous variants are likely to represent unique snapshots of failed transitions from mixotrophy to mycoheterotrophy. They are ecological equivalents to mutants in genetics, that is, their dysfunctions might suggest what makes mycoheterotrophy successful. Although their determinism remains unknown, they offer fascinating models for comparing the physiology of mixo- and mycoheterotrophs within similar genetic backgrounds.”

Mutants are strange indeed but with the right kinds of questions and approaches, they have a lot to teach us about ecology, evolution, and life at large.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3]

Parasitic Plant Rediscovered After a 151 Year Absence

Thismia.JPG

Extinction is a hard status to confirm for many types organisms. Whereas discovering a new species requires finding only a single individual, declaring one extinct requires knowing that there are no individuals left at all. This is especially true when organisms live cryptic lifestyles, a point recently made quite apparent by the rediscovery of a small parasitic plant known scientifically ask Thismia neptunis.

Thismia neptunis is a type of parasite called a mycoheterotroph, which means it makes its living by parasitizing mycorrhizal fungi in the soil. It obtains all of its needs in this way. As such, it produces no leaves, no chlorophyll, and really nothing that would readily identify it outright as a plant. All one would ever see of this species are its bizarre flowers that look more like a sea anemone than anything botanical. Like most mycoheterotrophs, when not in flower it lives a subterranean lifestyle.

The original drawing of Thismia neptunis (from Beccari 1878).

The original drawing of Thismia neptunis (from Beccari 1878).

This is why finding them can be so difficult. Even when you know where they are supposed to grow, infrequent flowering events can make assessing population numbers extremely difficult. Add to this the fact that Thismia neptunis is only known from a small region of Borneo near Sarawak where it grows in the dense understory of hyperdiverse Dipterocarp forests. It was first found and described back in 1866 but was not seen again for 151 years. To be honest, it is hard to say whether or not most folks were actively searching.

Regardless, after a 151 year absence, a team of botanists recently rediscovered this wonderful little parasite flowering not too far from where it was originally described. Though more study will be needed to flesh out the ecology of this tiny parasitic plant, the team was fortunate enough to witness a few tiny flies flitting around within the flower tube. It could very well be that these odd flowers are pollinated by tiny flies that frequent these shaded forest understories.

As exciting as this rediscovery is, it nonetheless underscores the importance of forest conservation. The fact that no one had seen this plant in over a century speaks volumes about how little we understand the diversity of such biodiverse regions. The rate at which such forests are being cleared means that we are undoubtedly losing countless species that we don't even know exist. Forest conservation is a must. 

Click here to support forest conservation efforts in Borneo. 

Photo Credit and Further Reading: [1]

How a Giant Parasitic Orchid Makes a Living

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Imagine a giant vine with no leaves and no chlorophyll scrambling over decaying wood and branches of a warm tropical forest. As remarkable as that may seem, that is exactly what Erythrorchis altissima is. With stems that can grow to upwards of 10 meters in length, this bizarre orchid from tropical Asia is the largest mycoheterotrophic plant known to science.

Mycoheterotrophs are plants that obtain all of their energy needs by parasitizing fungi. As you can probably imagine, this is an extremely indirect way for a plant to make a living. In most instances, this means the parasitic plants are stealing nutrients from the fungi that were obtained via a partnership with photosynthetic plants in the area. In other words, mycoheterotrophic plants are indirectly stealing from photosynthetic plants.

In the case of E. altissima, this begs the question of where does all of the carbon needed to build a surprising amount of plant come from? Is it parasitizing the mycorrhizal network associated with its photosynthetic neighbors or is it up to something else? These are exactly the sorts of questions a team from Saga University in Japan wanted to answer.

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

All orchids require fungal partners for germination and survival. That is one of the main reasons why orchids can be so finicky about where they will grow. Without the fungi, especially in the early years of growth, you simply don't have orchids. The first step in figuring out how this massive parasitic orchid makes its living was to identify what types of fungi it partners with. To do this, the team took root samples and isolated the fungi living within.

By looking at their DNA, the team was able to identify 37 unique fungal taxa associated with this species. Most surprising was that a majority of those fungi were not considered mycorrhizal (though at least one mycorrhizal species was identified). Instead, the vast majority of the fungi associated with with this orchid are involved in wood decay.

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

To ensure that these wood decay fungi weren't simply partnering with adult plants, the team decided to test whether or not the wood decay fungi were able to induce germination of E. altissima seeds. In vitro germination trials revealed that not only do these fungi induce seed germination in this orchid, they also fuel the early growth stages of the plant. Further tests also revealed that all of the carbon and nitrogen needs of E. altissima are met by these wood decay fungi.

These results are amazing. It shows that the largest mycoheterotrophic plant we know of lives entirely off of a generalized group of fungi responsible for the breakdown of wood. By parasitizing these fungi, the orchid has gained access to one of the largest pools of carbon (and other nutrients) without having to give anything back in return. It is no wonder then that this orchid is able to reach such epic proportions without having to do any photosynthesizing of its own. What an incredible world we live in!

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo Credits: [1] [2]

Further Reading: [1]

Newly Discovered Orchid Doesn't Bother With Photosynthesis or Opening Its Flowers

Photo by Suetsugu Kenji [SOURCE]

Photo by Suetsugu Kenji [SOURCE]

A new species of orchid has been discovered on the small Japanese island of Kuroshima. Though not readily recognized as an orchid, it nonetheless resides in the tribe Epidendroideae. Although the flowers of its cousins are often quite showy, this orchid produces small brown blooms that never open. What's more, it has evolved a completely parasitic lifestyle. 

The discovery of this species is quite exciting. The flora of Japan has long thought to be well picked over by botanists and ecologists alike. Finding something new is a special event. The discovery was made by Suetsugu Kenji, associate professor at the Kobe University Graduate School of Science. This discovery was made about a year after a previous parasitic plant discovery made on another Japanese island a mere stones throw from Kuroshima.

Coined Gastrodia kuroshimensis, this interesting little parasite flies in the face of what we generally think of when we think of orchids. It is small, drab, and lives out its entire life on the shaded forest floor. Like the rest of its genus, G. kuroshimensis is mycoheterotrophic. It produces no leaves or chlorophyll, living its entire life as a parasite on mycorrhizal fungi underground. This is not necessarily bizarre behavior for orchids (and plants in general). Many different species have adopted this strategy. What was surprising about its discovery is the fact that its flowers never seem to open. 

In botany this is called "cleistogamy." It is largely believed that cleistogamy evolved as both an energy saving and survival strategy. Instead of dumping lots of energy into producing large, showy flowers to attract pollinators, that energy can instead be used for seed production and persistence. Additionally, since the flowers never open, cross pollination cannot occur. The resulting offspring share 100% of their genes with the parent plant. Although this can be seen as a disadvantage, it can also be an advantage when conditions are tough. If the parent plant is adapted to the specific conditions in which it grows, giving 100% of its genes to its offspring means that they too will be wonderfully adapted to the conditions they are born into. 

As you can probably imagine, pure cleistogamy can be quite risky if conditions rapidly change. In the face of continued human pressures and rapid climate change, cleistogamy as a strategy might not be so good. That is one reason why the discovery of this bizarre little orchid is so interesting. Whereas most species that produce cleistogamous flowers also produce "normal" flowesr that open, this species seems to have given up that ability. Thus, G. kuroshimensis offers researchers a window into how and why this reproductive strategy evolved. 

Photo Credit: Suetsugu Kenji

Further Reading: [1]

Itty Bitty Bartonia

Every plant enthusiast has a handful of species that they search high and low for any time they find themselves out and about. It may be a species you have seen a bunch of times or one your have only read about in the literature. Either way, the search image burns strong in your mind so that when you finally come across the species in question, it is like seeing a celebrity. For me, one of those species is Bartonia virginica.

It may not look like much. Indeed, it is a rather diminutive plant, barely poking its flowers out of the shadows cast by pretty much every other plant near by. However, when conditions are just right, this little gentian seems to flourish. With leaves that have been reduced to small scales that sheath the dainty stem in a couple places, all that really stands out are the tiny, cream colored flowers that cluster near the top. A close inspection of the flowers with a hand lens reveals the unmistakable morphology that runs true throughout the gentian family.

Whereas the stem of the plant does contain chlorophyll, it has long been suspected that this plant must rely on other means of obtaining carbon due to its highly reduced leaves. A paper published in 2009 by Cameron et al., was able to shed some light on this matter. As it turns out, there is strong evidence in support of B. virginica being partially mycoheterotrophic.

This is such a cool little gentian. I was so happy to have come across some. Sometimes it's not always the biggest or the showiest that make our day, but rather the subtle and unique.

Further Reading:
http://plants.usda.gov/core/profile?symbol=bavi3

http://www.amjbot.org/content/97/8/1272.short