The First Genus (Alphabetically)

Photo by Eric in SF licensed under CC BY-SA 3.0

Photo by Eric in SF licensed under CC BY-SA 3.0

One thing I love about orchids is that they are so diverse. One could spend their entire life studying these plants and never run out of surprises. Every time I sit down with an orchid topic in mind, I end up going down a rabbit hole of immeasurable depth. I love this because I always end up learning new and interesting facts. For instance, I only recently learned that there is a genus of orchids that has been given the unbelievably complex name of Aa.

No, that is not an abbreviation. The genus was literally named Aa. As far as I have been able to tell, it is pronounced “ah” rather than “ay,” but if any linguists are reading this and beg to differ, please chime in! Regardless, I was floored by this silly exercise in plant naming and had to learn more. I had never heard of this genus before and figured that it was so obscure that it probably contained, at most, only a small handful of species. This assumption was wrong.

Aa maderoi. Photo by Dr. Alexey Yakovlev licensed under CC BY-SA 2.0

Aa maderoi. Photo by Dr. Alexey Yakovlev licensed under CC BY-SA 2.0

Though by no means massive, the genus Aa contains at least 25 recognized species. A quick search of the literature even turned up a few relatively recent papers describing new species. Apparently we have a ways to go in understanding their diversity. Nonetheless, this is an interesting and pretty genus of orchids.

From what I gather, Aa are most often found growing at high elevations in the Andes, though at least one species is native to mountainous areas of Costa Rica. They are terrestrial orchids that prefer cooler temperatures and fairly moist soil. Some species are said to only be found in close proximity to mountain streams. Some of the defining features of the genus are a tall inflorescence jam packed with tiny inconspicuous, greenish-white flowers. The flowers are surrounded by semi-transparent sheaths that are surprisingly showy. All in all, they kind of remind me of a mix between Spiranthes and Goodyera.

Close up of an inflorescence of Aa maderoi showing the small, white flowers and large, semi-transparent sheaths. Photo by Dr. Alexey Yakovlev licensed under CC BY-SA 2.0

Close up of an inflorescence of Aa maderoi showing the small, white flowers and large, semi-transparent sheaths. Photo by Dr. Alexey Yakovlev licensed under CC BY-SA 2.0

But what about the name? Why in the world was this genus given such a strange and abrupt moniker? The answer seems to be the silliest option I could think of: to be first. This genus was originally described in 1845 by German botanist Heinrich Gustav Reichenbach who recognized two species within the genus Altensteinia to be distinct enough to warrant their own genus.

According to most sources I could find, he coined this new genus Aa so that it would appear first on all taxonomic lists. There is at least one other report that the name was given in honor of a man by the name of Pieter van der Aa, but apparently this is “highly” disputed. However, all of this should be taken with a grain of salt. Though I can find plenty of literature describing various species within the genus, I could turn up no actual literature on the naming of the genus itself. All I could find is what has been repeated (almost verbatim) from Wikipedia.

So, there you have it. Not only does the genus Aa exist, it is still top of the list of all plant genera. If that truly was the goal Heinrich Gustav Reichenbach was aiming for, he certainly has succeeded!

Photos via Wikimedia Commons

Further Reading: [1]

The Deceptive Ways of the Calypso Orchid

Photo by Murray Foubister licensed under CC BY-ND 2.0.

Photo by Murray Foubister licensed under CC BY-ND 2.0.

Behold the Calypso orchid, Calypso bulbosa. This circumboreal orchid exists as a single leaf lying among the litter of dense conifer forests. They go virtually unnoticed for most of the year until it comes time to flower.

In early spring, the extravagant blooms open up and await the arrival of bumblebees. Calypsos go to great lengths to attract bumblebees. The flower is said to have a sweet scent. Also, the lip sports small, yellow, hair-like protrusions that are believed to mimic anthers covered in pollen. Finally, within the pouch formed by the lip are two false nectar spurs. All of these are a ruse. The Calypso offers no actual rewards to visiting bumblebees.

94143665_569382040377450_8051120980392673280_n.jpg

Not just any bumblebee will do. For the ruse to work, it requires freshly emerged workers that are naive to the orchid’s deception. Bumblebees are not mindless animals. They quickly learn which flowers are worth visiting and which are not. Because of this, the Calypso has only short window of time in which bumblebees in the vicinity are likely to fall for its tricks. As a result, pollination rates are often very low for this orchid.

The most interesting aspect of all of this is that the so-called "male function" of the flower - pollinia removal - is more likely to occur than the "female function" - pollen deposition. The reason for this makes a lot of sense in context; male function requires a bumblebee to be fooled only once whereas female function requires a bumblebee to be fooled at least twice.

The caveat to all of this deception is that a single Calypso, like all other orchids, can produce tens of thousands of seeds. Each orchid therefore has tens of thousands of potential propagules to replace itself in the next generation. Despite that fact, the Calypso orchid is on the decline. Habitat destruction, poaching, deer, and invasive species are taking their toll. If you care about orchids like the Calypso, please consider supporting organizations like the North American Orchid Conservation Center.

Photo by Murray Foubister licensed under CC BY-ND 2.0.

Photo by Murray Foubister licensed under CC BY-ND 2.0.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4]

How radioactive carbon from nuclear bomb tests can tell us what parasitic orchids are eating

Yoania japonica. Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Yoania japonica. Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Historically, non-photosynthetic plants were defined as saprotrophs. It was thought that, like fungi, such plants lived directly off of decaying materials. Advances in our understanding have since revealed that parasitic plants don’t do any of the decaying themselves. Instead, those that aren’t direct parasites on the stems and roots of other plants utilize a fungal intermediary. We call these plants mycoheterotrophs (fungus-eaters). Despite recognition of this strangely fascinating relationship, we still have much to learn about what kinds of fungi these plants parasitize and where most of the nutritional demands are coming from.

It is largely assumed that most mycoheterotrophic plants are parasitic on mycorrhizal fungi. This would make them indirect parasites on other photosynthetic plants. The mycorrhizal fungi partner with photosynthetic plants, exchanging soil nutrients for carbon made by the plant during photosynthesis. However, this is largely assumed rather than tested. New research out of Japan has shown a light on what is going on with some of these parasitic relationships and the results are a bit surprising. What’s more, the methods they used to better understand these parasitic relationships are pretty clever to say the least.

Cyrtosia septentrionalis Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Cyrtosia septentrionalis Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Photosynthesis involves the uptake of and subsequent breakdown of CO2 from the atmosphere. The carbon from CO2 is then used to build carbohydrates, which form the backbone of most plant tissues. Not all carbon is created equal, however, and by looking at ratios of different carbon isotopes in living tissues, scientists can better understand where the carbon came from. For this research, scientists utilized an isotope of carbon called 14C.

Eulophia zollingeri photo by Vinayraja licensed by CC BY-NC-SA 3.0

Eulophia zollingeri photo by Vinayraja licensed by CC BY-NC-SA 3.0

14C is special because it is not as common in our atmosphere as other isotopes of carbon such as 12C and 13C. One of the biggest sources of 14C in our atmosphere were nuclear bomb explosions. From the 1950’s until the Partial Nuclear Test Ban in 1963, atomic bomb tests were a regular occurrence. During that time period, the concentration of 14C in our atmosphere greatly increased. Any organism that was fixing carbon into its tissues during that span of time will contain elevated levels of 14C compared to the other carbon isotopes. Alternatively, anything fixing carbon today, say via photosynthesis, will have considerably reduced levels of 14C in its tissues.

Gastrodia elata Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

Gastrodia elata Photo by Qwert1234 licensed by CC BY-NC-SA 4.0

By looking at the ratios of 14C in the tissues of parasitic plants, scientists reasoned that they could assess the age of the carbon being utilized. If more 14C was present, the source of the carbon could not come from today’s atmosphere and therefore not from recent photosynthesis. Instead, it would have to come from older sources like decaying wood of long-dead trees. In other words, if parasitic plants were high in 14C, then the scientists could reasonably conclude that they were parsitizing wood-decaying saprotrophic fungi. If the plants were high in 12C or 13C, then they could conclude that they were partnering with mycorrhizal fungi instead, which were obtaining carbon from present-day photsynthesis.

The researchers looked at 10 different species of parasitic plants across Japan, most of which were orchids. They analyzed their tissues and ran analyses on the carbon molecules within. What they found is that 6 out of the 10 plants contained much higher levels of 12C and 13C in their tissues, which points to mycorrhizal fungi as their host. However, for the 4 remaining species (Gastrodia elata, Cyrtosia septentrionalis, Yoania japonica and Eulophia zollingeri), the ratios of 14C were considerably higher, meaning their host fungi were eating dead wood, not partnering with photosynthetic plants near by.

Indeed, it appears that at least some mycoheterotrophic plants are benefiting from saprotrophic rather than mycorrhizal fungi. Those early assumptions into the livelihood of such plants were not as far off the mark after all. This is very exciting research that opens the door to a much deeper understanding of some of the strangest plants on our planet.

LEARN MORE ABOUT MYCOHETEROTROPHIC PLANTS IN EPISODE 234 OF THE IN DEFENSE OF PLANTS PODCAST

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2]

What an orchid that smells like rotting meat can tell us about carrion flies

Satyrium pumilum Photo by Bernd Haynold licensed by CC BY-SA 3.0

Satyrium pumilum Photo by Bernd Haynold licensed by CC BY-SA 3.0

Orchids are really good at tricking pollinators. Take, for instance, this strange looking orchid from South Africa. Satyrium pumilum is probably obscure to most of us but it is doing fascinating things to ensure its own reproductive success. This orchid both smells and kind of looks like rotting meat, which is how it attracts its pollinators.

It is a bit strange to think of orchids living in arid climates like those found in South Africa but this family is defined by exceptions. That is not to say that Satyrium pumilum is a desert plant. To find this orchid, you must look in special microclimates where water sticks around long enough to support its growth. Populations of S. pumilum are most often found clustered near small streams or hidden under bushes throughout the western half of the greater Cape Floristic Region.

Satyrium pumilum blooms from the beginning of September until late October. As is typical in the orchid family, S. pumilum produces rather intricate flowers. Whereas the sepals are decked out in various shades of green, the interior of the flower is blood red in color. Also, unlike many of its cousins, S. pumilum doesn’t throw its flowers up on a tall stalk for all the world to see. Instead, its flowers open up at ground level and give off an unpleasant smell of rotting meat.

This is where pollinators enter into the picture. It has been found that carrion flies are the preferred pollinator for S. pumilum. By producing flowers at ground level that both look and smell like rotting meat, the plants are primed to attract these flies. The plants are tapping into the flies’ reproductive habits, a biological imperative so strong that they simply do not evolve a means of discriminating a rotting corpse from a flower that smells like one. This is the trick. Flies land on the flower thinking they have found a meal and a place to lay their eggs. They go through the motions as expected and pick up or deposit pollen in the process. Unfortunately for the flies, their offspring are doomed. There is not food to be found in these flowers.

What is most remarkable about the reproductive ecology of S. pumilum is that not just any type of fly will do. It appears that only a specific subset of flies actually visit the flowers and act as effective pollinators. Amazingly, this provides insights into some long-running hypotheses regarding carrion fly ecology.

(A) The habitat of S. pumilum (B) Satyrium pumilum in situ (scale bar = 1 cm). (C–E) Pollination sequence of a S. pumilum flower by a sarcophagid fly in an arena (scale bar for all three photos = 0·5 cm); (C) the fly carrying five pollinaria from ot…

(A) The habitat of S. pumilum (B) Satyrium pumilum in situ (scale bar = 1 cm). (C–E) Pollination sequence of a S. pumilum flower by a sarcophagid fly in an arena (scale bar for all three photos = 0·5 cm); (C) the fly carrying five pollinaria from other S. pumilum flowers enters an unpollinated flower (D) as the fly moves deeper into the flower towards the right-hand spur, it presses an attached pollinium against the stigma, and its thorax against the right-hand viscidium; (E) as it leaves the flower, the fly has deposited two massulae on the stigma (1), and removed a pollinarium (2) – it now carries six pollinaria. [SOURCE]

Apparently there has been a lot of debate in the fly community over why we see so many different species of carrion flies. Rotting meat is rotting meat, right? Probably not, actually. Fly ecologists have comes up with a few hypotheses involving niche segregation among carrion flies to explain their diversity on the landscape. Some believe that flies separate themselves out in time, with different species hatching out and breeding at different times of the year. Others have suggested that carrion flies separate themselves by specializing on carrion at different stages of decay. Still others have suggested that some flies specialize on large pieces of carrion whereas others prefer smaller pieces.

By studying the types of flies visiting the flowers of S. pumilum researchers did find evidence of niche segregation based on carrion size. It turns out that S. pumilum is exclusively pollinated by a group of flies known as sarcophagid carrion flies. These flies were regularly observed with orchid pollen sacs stuck to their backs and plants seemed to only set seed after they had been visited by members of this group. So, what is it about these flowers that makes them so specific to this group of flies?

The answer lies both in their size as well as the amount of scent they produce. It is likely that the quantity of scent compounds produced by S. pumilum most closely mimics that of smaller rotting corpses. The types of flies that visited these blooms were mostly females of species that lay relatively few eggs compared to other carrion flies. It could very well be that the smaller brood size of these flies allows them to effectively utilize smaller bits of carrion than other, more fecund species of fly. To date, this is some of the best evidence in support of the idea that flies avoid competition among different species by segregating out their feeding and reproductive niches.

Rotting meat smells are not uncommon in the plant world. Even within the home range of S. pumilum, there are other plants produce flowers that smell like carrion as well. It would be extremely interesting to look at what kinds of flies visit other carrion flowers and in what numbers. Like I mentioned earlier, reproductive is such a major part of any organisms life that it may simply be too costly for carrion flies to evolve a means of discriminating real and fake breeding sites. It is amazing to think of what we gain from trying to understand the reproductive biology of a small, obscure orchid growing tucked away in arid regions of South Africa.

Photo Credits: [1] [2]

Further Reading: [1]

Mutant Orchids Have a lot to Teach Us About Parasitic Plants

A) Albino and (B) green individual of Goodyera velutina.

A) Albino and (B) green individual of Goodyera velutina.

The botanical world is synonymous with the idea of photosynthesis. Plants take in carbon dioxide and water and utilize light to make their own food. However, not all plants make a living this way. There are many different species of plants that have evolved a parasitic lifestyle to one degree or another. Some of my favorites are those that parasitize mycorrhizal fungi. We call these plants “mycoheterotrophs” and they are fascinating to say the least. Orchids are especially prone to this strategy, with over 1% of all known species having completely lost the ability to photosynthesize.

Our knowledge of the mycoheterotrophic strategy is fragmentary at best. We still don’t fully understand things like how the plants obtain what they need from the fungus nor how they are able to maintain their parasitic lifestyle without the fungus catching on and rejecting the one-sided partnership. This is not to say we know nothing. In fact, as technologies advance, we are unlocking at least some of the mysteries of mycoheterotrophic plants. Some of the best advances come from studying mutant, albino orchids. To understand how, we have to take a closer look at the “average” orchid lifestyle.

Orchids in general make great candidates for understanding the evolution of mycoheterotrophy because all of them start their lives as parasites. Orchids produce some of the smallest seeds in the plant kingdom and without the help of mycorrhizal fungi, they would never be able to germinate. For much of their early life, orchids rely on fungi to provide them with both their mineral and carbohydrate needs. Only after the orchids are large enough to grow leaves will most of them start to give back to their fungal partners in the form of carbohydrates generated from photosynthesis.

Still, many orchids never fully let go of this parasitic lifestyle. This is especially true for orchids living under dense forest canopies. With light in limited supply, many orchids adopt a mixotrophic lifestyle. Essentially this means that although they actively photosynthesize, they nonetheless rely on fungi to provide them with both carbohydrates and minerals. Mixotrphy is likely the most wide-spread orchid strategy and it has been hypothesized that it is also the first step along the path to becoming fully parasitic. This is where the mutant orchids enter the equation.

(A) Albino and (B) green individuals of Epipactis helleborine

(A) Albino and (B) green individuals of Epipactis helleborine

Every once in a while, some orchids will germinate and grow into albino versions of their species. Without the ability to produce chlorophyll, these mutants should be destined for a quick death. Such is not the case for many of these orchids. Albino orchids often go on to live full lives, growing and flowering just like their photosynthetic progenitors. Although they do exhibit signs of reduced fitness, the fact that they are able to live at all brings up a lot of questions ready for science to tackle.

Recent investigations into the lives of these albino mutants has revealed some interesting insights into how mycoheterotrophy may have evolved in the first place. By studying the fungal partners of both healthy plants and the albinos, researchers have been able to demonstrate that albinos are doing things a bit differently than their photosynthetic parents. Using isotopes of carbon and nitrogen, scientists are discovering that the albinos have switched their interaction with the fungi in such a way that they more resemble fully mycoheterotrophic orchid species. This is done despite the fact that both albinos and their fully functional parents associate with the same guild of mycorrhizal fungi.

Another interesting difference between albinos and their photosynthetic parents is the fact that the genes involved both antioxidant metabolism and metabolite transfer (mainly carbon in this case) were more active in the albinos than they were in functioning plants. The uptick in gene functioning related to antioxidant metabolism suggests that the mutant plants are undergoing greater oxidative stress than their functional parents. This may have something to do with how the albinos are able to obtain nutrients from their fungal partners. It is thought that mycoheterotrophs actively digest parts of the fungi, which allows them to access the carbon and minerals they need to survive. This process exposes their cells to reactive oxygen compounds that can be very damaging. Antioxidants would help to reduce such damage.

The uptick in genes associated with metabolite transfer was more surprising because it suggests that despite being parasites, the plants are actively transferring substances back to the fungi. It has long been assumed that mycoheterotrophy was a one way street, with fungi transferring nutrients to plants only. These genes now suggest that, at least in some species, such transfer is a two-way street. The exact nature of this two-way transfer remains a mystery and certainly brings up many more questions that must be asked before we can better understand this relationship.

All of this is not to say that such albino mutants are fruitful “next steps” in the evolution of these species. Far from it, in fact. Two things that most albino orchid variants have in common is the fact that they are rare and, of those that have been studied, produce far fewer seeds. There are a lot of anatomical and physiological differences between true mycoheterotrophic species and albino variants and it appears that without those anatomical adaptations, the albinos are a lot less fit than their photosynthetic parents. As authors Selosse and Roy put it:

“non-chlorophyllous variants are likely to represent unique snapshots of failed transitions from mixotrophy to mycoheterotrophy. They are ecological equivalents to mutants in genetics, that is, their dysfunctions might suggest what makes mycoheterotrophy successful. Although their determinism remains unknown, they offer fascinating models for comparing the physiology of mixo- and mycoheterotrophs within similar genetic backgrounds.”

Mutants are strange indeed but with the right kinds of questions and approaches, they have a lot to teach us about ecology, evolution, and life at large.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3]

The Round Leaved Orchid

10314523_1036601796366685_3819966962734306060_n.jpg

In the northern temperate regions of North America, late June marks the beginning of what I like to call orchid season. If you're lucky you may stumble across one of these rare beauties in full bloom. Their diversity in shape and size are mainly a result of the intricate evolutionary relationships they have formed with their pollinators. I spend much of my time botanizing trying to locate and photograph these botanical curiosities and any time I get to meet a new species is a very special time indeed. 

Take the round leaved orchid (Platanthera orbiculata) for example. For years I have only known this species as two round leaves that are slightly reminiscent of the phaleanopsis orchids you see for sale in nurseries and grocery stores. The leaves can be quite large too. With their glossy appearance, they are the easiest way to locate this plant.

When conditions are right and the plants have enough stored energy they will begin to flower. Rising from the middle of the pair of leaves is a decent sized inflorescence loaded with greenish white flowers. The flowers are interesting structures. Not particularly colorful, they have a long white lip and considerable green nectar spurs. There are said to be two varieties of this species, each being characterized by the length of the nectar spur. Unlike many orchids that offer no reward to pollinators, P. orbiculata produces nectar. The flowers are pollinated by noctuid moths, which is probably why they are white in color. Whereas most lepidopteran pollinated orchid attach their pollinia to the proboscis of the butterfly or moth, P. orbiculata attaches its pollinia to the eyes of visiting moths. 

10891511_1036601783033353_3763668357415606405_n.jpg

If this isn't strange enough, the pollinia themselves have some of their own intriguing adaptations. Visiting moths take a certain amount of time to successfully access the nectar from the nectar spur. If the plant is to avoid wasting precious pollen on itself, then it must find a way to delay this process. The pollinia are the solution to this. When first attached to the eyes, the pollinia stick straight up. This keeps them away from the female parts of the plant as the moth feeds. Only after enough time has elapsed will the stalks of the pollinia begin to bend forward. At this point the moth will hopefully have moved on to the flowers of an unrelated individual. Pointing straight forward, they are now perfectly positioned to transfer pollen. 

Like all orchids, P. orbiculata relies on specialized mycorrhizal fungi for germination and survival. At the beginning of its life, P. orbiculata relies solely on the fungi for sustenance. Once it has enough energy to produce leaves it will repay the fungi by providing carbohydrates. However, the relationship is not over at this point. Every spring, P. orbiculata produces a new set of leaves as well as a whole new root system. The fungi supply a lot of energy for this process and if the plant is disturbed (ie. dug up by greedy poachers) or browsed upon, it is likely that it will not recover from the stress and it will die. The mycorrhizal fungi it relies on live on rotting wood so finding well rotted logs is a good place to start searching for this species. With declining populations throughout much of its range, it is important to remember to enjoy it where it grows. Leave wild orchids in the wild!

Further Reading: [1] [2] [3] [4]

From Herbivore to Pollinator Thanks to a Parasitoid

dichayea.JPG

In the Atlantic forests of Brazil resides a small orchid known scientifically as Dichaea cogniauxiana. Like most plant species, this orchid experiences plenty of pressure from herbivores. It faces rather intense pressures from two species of weevil in the genus Montella. These weevils are new to science and have yet been given full species status. What's more, they don't appear to eat the leaves of D. cogniauxiana. Instead, female weevils lay eggs in the developing fruits and the larvae hatch out and consume the seeds within. In other words, they treat the fruits like a nursery chamber.

This is where this relationship gets interesting. You see, the weevils themselves appear to take matters into their own hands. Instead of waiting to find already pollinated orchids, an event that can be exceedingly rare in these dense forests, these weevils go about pollinating the orchids themselves. Females have been observed picking up orchid pollinia and depositing the pollen onto the stigmas. In this way, they ensure that there will be developing fruits in which they can raise their young.

1-s2.0-S0960982218301672-gr1.jpg

Left unchecked, the weevil larvae readily consume all of the developing seeds within the pod, an unfortunate blow to the reproductive efforts of this tiny orchid. However, the situation changes when parasitoid wasps enter the mix. The wasps are also looking for a place to rear their young but the wasp larvae do not eat orchid seeds. Instead, the wasps must find juicy weevil larvae in which to lay their eggs. When the wasp larvae hatch out, they eat the weevil larvae from the inside out and this is where things get really interesting.

The wasp larvae develop at a much faster rate than do the weevil larvae. As such, they kill the weevil long before it has a chance to eat all of the orchid seeds. By doing so, the wasp has effectively rescued the orchids reproductive effort. Over a five year period, researchers based out of the University of Campinas found that orchid fruits in which wasp larvae have killed off the weevil larvae produced nearly as many seeds as uninfected fruits. As such, the parasitoid wasps have made effective pollinators out of otherwise destructive herbivorous weevils.

The fact that a third party (in this case a parasitic wasp) can change a herbivore into an effective pollinator is quite remarkable to say the least. It reminds us just how little we know about the intricate ways in which species interact and form communities. The authors note that even though pollination in this case represents selfing and thus reduced genetic diversity, it nonetheless increases the reproductive success of an orchid that naturally experiences low pollination rates to begin with. In the hyper diverse and competitive world of Brazilian rainforests, even self-pollination cab be a boost for this orchid.

Photo Credits: [1] [2]

Further Reading: [1]

How a Giant Parasitic Orchid Makes a Living

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Imagine a giant vine with no leaves and no chlorophyll scrambling over decaying wood and branches of a warm tropical forest. As remarkable as that may seem, that is exactly what Erythrorchis altissima is. With stems that can grow to upwards of 10 meters in length, this bizarre orchid from tropical Asia is the largest mycoheterotrophic plant known to science.

Mycoheterotrophs are plants that obtain all of their energy needs by parasitizing fungi. As you can probably imagine, this is an extremely indirect way for a plant to make a living. In most instances, this means the parasitic plants are stealing nutrients from the fungi that were obtained via a partnership with photosynthetic plants in the area. In other words, mycoheterotrophic plants are indirectly stealing from photosynthetic plants.

In the case of E. altissima, this begs the question of where does all of the carbon needed to build a surprising amount of plant come from? Is it parasitizing the mycorrhizal network associated with its photosynthetic neighbors or is it up to something else? These are exactly the sorts of questions a team from Saga University in Japan wanted to answer.

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

All orchids require fungal partners for germination and survival. That is one of the main reasons why orchids can be so finicky about where they will grow. Without the fungi, especially in the early years of growth, you simply don't have orchids. The first step in figuring out how this massive parasitic orchid makes its living was to identify what types of fungi it partners with. To do this, the team took root samples and isolated the fungi living within.

By looking at their DNA, the team was able to identify 37 unique fungal taxa associated with this species. Most surprising was that a majority of those fungi were not considered mycorrhizal (though at least one mycorrhizal species was identified). Instead, the vast majority of the fungi associated with with this orchid are involved in wood decay.

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

To ensure that these wood decay fungi weren't simply partnering with adult plants, the team decided to test whether or not the wood decay fungi were able to induce germination of E. altissima seeds. In vitro germination trials revealed that not only do these fungi induce seed germination in this orchid, they also fuel the early growth stages of the plant. Further tests also revealed that all of the carbon and nitrogen needs of E. altissima are met by these wood decay fungi.

These results are amazing. It shows that the largest mycoheterotrophic plant we know of lives entirely off of a generalized group of fungi responsible for the breakdown of wood. By parasitizing these fungi, the orchid has gained access to one of the largest pools of carbon (and other nutrients) without having to give anything back in return. It is no wonder then that this orchid is able to reach such epic proportions without having to do any photosynthesizing of its own. What an incredible world we live in!

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo Credits: [1] [2]

Further Reading: [1]

The Extraordinary Catasetum Orchids

Male Catasetum osculatum. Photo by Orchi licensed under CC BY-SA 3.0

Male Catasetum osculatum. Photo by Orchi licensed under CC BY-SA 3.0

Orchids, in general, have perfect flowers in that they contain both male and female organs. However, in a family this large, exceptions to the rules are always around the corner. Take, for instance, orchids in the genus Catasetum. With something like 166 described species, this genus is interesting in that individual plants produce either male or female flowers. What's more, the floral morphology of the individual sexes are so distinctly different from one another that some were originally described as distinct species. 

Female Catasetum osculatum. Photo by Valdison Aparecido Gil licensed under CC BY-SA 4.0

Female Catasetum osculatum. Photo by Valdison Aparecido Gil licensed under CC BY-SA 4.0

In fact, it was Charles Darwin himself that first worked out that plants of the different sexes were indeed the same species. The genus Catasetum enthralled Darwin and he was able to procure many specimens from his friends for study. Resolving the distinct floral morphology wasn't his only contribution to our understanding of these orchids, he also described their unique pollination mechanism. The details of this process are so bizarre that Darwin was actually ridiculed by some scientists of the time. Yet again, Darwin was right. 

Catasetum longifolium. Photo by Maarten Sepp licensed under CC BY-SA 4.0

Catasetum longifolium. Photo by Maarten Sepp licensed under CC BY-SA 4.0

If having individual male and female plants wasn't strange enough for these orchids, the mechanism by which pollination is achieved is quite explosive... literally. 

Catasetum orchids are pollinated by large Euglossine bees. Attracted to the male flowers by their alluring scent, the bees land on the lip and begin to probe the flower. Above the lip sits two hair-like structures. When a bee contacts these hairs, a structure containing sacs of pollen called a pollinia is launched downwards towards the bee. A sticky pad at the base ensures that once it hits the bee, it sticks tight. 

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Male Catasetum flower in action. Taken from BBC's Kingdom of Plants.

Bees soon learn that the male flowers are rather unpleasant places to visit so they set off in search of a meal that doesn't pummel them. This is quite possibly why the flowers of the individual sexes look so different from one another. As the bees visit the female flowers, the pollen sacs on their back slip into a perfect groove and thus pollination is achieved. 

The uniqueness of this reproductive strategy has earned the Catasetum orchids a place in the spotlight among botanists and horticulturists alike. It begs the question, how is sex determined in these orchids? Is it genetic or are there certain environmental factors that push the plant in either direction? As it turns out, light availability may be one of the most important cues for sex determination in Catasetum

Photo by faatura licensed under CC BY-NC-ND 2.0

Photo by faatura licensed under CC BY-NC-ND 2.0

A paper published back in 1991 found that there were interesting patterns of sex ratios for at least one species of Catasetum. Female plants were found more often in younger forests whereas the ratios approached an even 1:1 in older forests. What the researchers found was that plants are more likely to produce female flowers under open canopies and male flowers under closed canopies. In this instance, younger forests are more open than older, more mature forests, which may explain the patterns they found in the wild. It is possible that, because seed production is such a costly endeavor for plants, individuals with access to more light are better suited for female status. 

Catasetum macrocarpum. Photo by maarten sepp licensed under CC BY-SA 2.0

Catasetum macrocarpum. Photo by maarten sepp licensed under CC BY-SA 2.0

Aside from their odd reproductive habits, the ecology of these plants is also quite fascinating. Found throughout the New World tropics, Catasetum orchids live as epiphytes on the limbs and trunks of trees. Living in the canopy like this can be stressful and these orchids have evolved accordingly. For starters, they are deciduous. Most of the habitats in which they occur experience a dry season. As the rains fade, the plants will drop their leaves, leaving behind a dense cluster of green pseudobulbs. These bulbous structures serve as energy and water stores that will fuel growth as soon as the rains return. 

Catasetum silvestre in situ. Photo by Antonio Garces licensed under CC BY-NC-ND 2.0

Catasetum silvestre in situ. Photo by Antonio Garces licensed under CC BY-NC-ND 2.0

The canopy can also be low in vital nutrients like nitrogen and phosphorus. As is true for all orchids, Catasetum rely on an intimate partnership with special mychorrizal fungi to supplement these ingredients. Such partnerships are vital for germination and growth. However, the fungi that they partner with feed on dead wood, which is low in nitrogen. This has led to yet another intricate and highly specialized relationship for at least some members of this orchid genus. 

Photo by faatura licensed under CC BY-NC-ND 2.0

Photo by faatura licensed under CC BY-NC-ND 2.0

Mature Catasetum are often found growing right out of arboreal ant nests. Those that aren't will often house entire ant colonies inside their hollowed out pseudobulbs. This will sometimes even happen in a greenhouse setting, much to the chagrin of many orchid growers. The partnership with ants is twofold. In setting up shop within the orchid or around its roots, the ants provide the plant with a vital source of nitrogen in the form of feces and other waste products. At the same time, the ants will viciously attack anything that may threaten their nest. In doing so, they keep many potential herbivores at bay.  

Female Catasetum planiceps. Photo by sunoochi licensed under CC BY 2.0

Female Catasetum planiceps. Photo by sunoochi licensed under CC BY 2.0

To look upon a flowering Catasetum is quite remarkable. They truly are marvels of evolution and living proof that there seems to be no end to what orchids have done in the name of survival. Luckily for most of us, one doesn't have to travel to the jungles and scale a tree just to see one of these orchids up close. Their success in the horticultural trade means that most botanical gardens house at least a species or two. If and when you do encounter a Catasetum, do yourself a favor and take time to admire it in all of its glory. You will be happy that you did. 

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8] [9] 

Further Reading: [1] [2] [3] [4] [5]

In Search of a Parasitic Orchid

In this episode, In Defense of Plants goes looking for a tiny parasitic orchid called the autumn coralroot (Corallorhiza odontorhiza - http://bit.ly/2xQhzbc). It has no leaves and does not photosynthesize. Instead, it makes its living completely off of mycorrhizal fungi, digesting its hyphae within the cells of its highly derived roots. Along the way we meet plants such as:

 Music by: Artist: Ampacity

Track: Asimov's Sideburns

https://ampacity.bandcamp.com https://www.facebook.com/ampacityband

In Search of the Orange Fringed Orchid

In Defense of Plants is finally back for another exciting botanical adventure! This week we explore another wonderful sand prairie in search of one of North America's most stunning terrestrial orchids - the orange fringed orchid (Platanthera ciliaris). Along the way, we meet a handful of great native plant species that are at home in these sandy soils.

Music by: 
Artist: Eyes Behind the Veil
Track: Folding Chair
Album: Besides
https://eyesbehindtheveil.bandcamp.com/

An Orchid of Hybrid Origin

Hybridization is an often overlooked mechanism for evolution. We are taught in high school that hybrids such as mules and ligers are one-off's, evolutionary dead ends doomed to a life of sterility. Certainly this holds true in many instances. Species separated by great lengths of time and space are simply incompatible. However, there are instances throughout the various kingdoms of life in which hybrids do turn out viable.

If they are different enough from either parent, their creation may lead to speciation down the line. Such events have been found in ferns, butterflies, and even birds. One particular example of a hybrid species only recently came to my attention. While touring the Atlanta Botanical Garden I came across a fenced off bed of plants. Inside the fence were orchids standing about knee height. At the top of each plant was a brilliant spike of orange flowers. "Ah," I exclaimed, "the orange fringed orchid!" The reply I got was unexpected - "Sort of."

What I had stumbled across was neither the orange fringed orchid (Platanthera ciliaris) nor the crested yellow orchid (Platanthera cristata). What I was looking at were a small handful of the globally imperiled Chapman's fringed orchid (Platanthera chapmanii). Though there is some debate about the origins of this species, many believe it to be a naturally occurring hybrid of the other two. In many ways it is a perfect intermediate. Despite its possible hybrid origins, it nonetheless produces viable seed. What's more, it readily hybridizes with both parental species as well as a handful of other Platanthera with which it sometimes shares habitat.

Despite occasionally being found along wet roadside ditches, this species is rapidly losing ground. The wet meadows and pine savannas it prefers are all too quickly being leveled for housing and other forms of development. Although it once ranged from southeast Texas to northern Florida, and southeast Georgia, it has since been reduced to less than 1000 individuals scattered among these three states.

There is a light at the end of the tunnel though. Many efforts are being put forth to protect and conserve this lovely orchid. Greenhouse propagation in places like the Atlanta Botanical Garden are helping supplement wild populations while at the same time, maintaining genetic diversity. New populations have been located in Georgia and are now under protection. Though not out of the woods yet, this species serves as a reminder that a little bit of effort can go a long way.

Further Reading: [1] [2] [3] [4]

Wet Prairies and the White Lady's Slipper

This week we visit a wet prairie in search of the white lady's slipper orchid (Cypripedium candidum). This is a unique habitat type full of incredible plants and we meet many of them along the way. Special thanks to Paul Marcum (http://bit.ly/2r6SG8s) in making this episode possible! 

If you would like to support orchid conservation efforts here in North America, consider purchasing a stick over at http://www.indefenseofplants.com/shop/

Producer, Writer, Creator, Host:
Matt Candeias (http://www.indefenseofplants.com)

Producer, Editor, Camera:
Grant Czadzeck (http://www.grantczadzeck.com)

Twitter: @indfnsofplnts

Facebook: http://www.facebook.com/indefenseofpl...

Patreon: http://www.patreon.com/indefenseofplants

Tumblr: http://www.tumblr.com/indefenseofplants

_________________________________________________________________

Music by: 
Artist: Lazy Legs
Track: Chain of Pink
Album: Chain of Pink
http://lazylegs.bandcamp.com

Seed Anchor

Epiphytic plants live out their entire lives on the trunks or branches of trees. Using their roots, they attach themselves tightly to the bark. Spend any amount of time in the tropics and it will become quite clear that such a lifestyle has been very successful for a plethora of different plant families. Still, living on a tree isn't easy. Epiphytic plants must overcome harsh conditions among or near the canopy.

Photo by faatura licensed under CC BY-NC-ND 2.0

Photo by faatura licensed under CC BY-NC-ND 2.0

One of the biggest challenges these plants face starts before they even germinate. This is especially true for orchids. Orchid seeds are more like spores than they are seeds. They are so small that thousands could fit inside of a thimble. Upon ripening, the dust-like seeds waft away on the slightest breeze. In order for epiphytic species to germinate and grow, their seeds must somehow anchor themselves in place on a trunk or branch. Inevitably most seeds are doomed to fail. They simply will not land in a suitable location. It stands to reason then that any adaptation that increases their chances of finding the right kind of habitat will be favored. That's where the strange coils on the tip of Chiloschista seeds, a genus of leafless orchids native to southeast Asia, New Guinea, and Australia, come in. For these orchids, this process is aided by some truly unique seed morphology.

Unlike most orchid seeds that are nothing more than a thin sheath surrounding a tiny embryo, the seeds of Chiloschista have additional parts. These "appendages," which are specialized seed coat cells, are tightly wound into coils. Upon contact with water, these coils shoot out like tiny grappling hooks that grab on to moss and bark alike. In doing so, they anchor the seed in place. By securing their hold on the trunk or branch of a tree, the seeds are much more likely to germinate and grow. This is one of the most extreme examples of seed specialization in the orchid family.

Photo Credit: [1] [2]

Further Reading: [1]

Orchid Dormancy Mediated by Fungi

Photo by NC Orchid licensed under CC BY-NC 2.0

Photo by NC Orchid licensed under CC BY-NC 2.0

North America's terrestrial orchids seem to have mastered the disappearing act. When stressed, these plants can enter into a vegetative dormancy, existing entirely underground for years until the right conditions return for them to grow and bloom. Cryptic dormancy periods like this can make assessing populations quite difficult. Orchids that were happy and flowering one year can be gone the next... and the next... and the next...

How and why this dormancy is triggered has confused ecologists and botanists alike. Certainly stress is a factor but what else triggers the plant into going dormant? According to a recent paper published in the American Journal of Botany, the answer is fungal.

Orchids are the poster children for mycorrhizal symbioses. Every aspect of an orchid's life is dependent on these fungal interactions. Despite our knowledge of the importance of mycorrhizal presence in orchid biology, no one had looked at how the abundance of mycorrhizal fungi influenced the life history of these charismatic plants until now.

By observing the presence and abundance of a family of orchid associated fungi known as Russulaceae, researchers found that the abundance of mycorrhizal fungi in the environment is directly related to whether or not an orchid will emerge. The team focused on a species of orchid known commonly as the small whorled pogonia (Isotria medeoloides). Populations of this federally threatened orchid are quite variable and assessing their numbers is difficult.

The team found that the abundance of mycorrhizal fungi is not only related to prior emergence of these plants but could also be used as a predictor of future emergence. This has major implications for orchid conservation overall. It's not enough to simply protect orchids, we must also protect the fungal communities they associate with.

Research like this highlights the need for a holistic habitat approach to conservation issues. So many species are partners in symbiotic relationships and we simply can't value one partner over the other. If conditions change to the point that they no longer favor the mycorrhizal partner, it stands to reason that it would only be a matter of years before the orchids disappeared for good.

Photo Credit: NC Orchid

Further Reading: [1]

A Peculiar Case of Bird Pollination

Via Johnson and Brown [SOURCE]

Via Johnson and Brown [SOURCE]

When we think of bird pollination, we often conjure images of a hummingbird sipping nectar from a long, tubular, red flower. Certainly the selection pressures brought about from entering into a pollination syndrome with birds has led to convergence in floral morphology across a wide array of different plant genera. Still, just when we think we have the natural world figured out, something new is discovered that adds more complexity into the mix. Nowhere is this more apparent than the peculiar relationship between an orchid and a bird native to South Africa.

The orchid in question is known scientifically as Disa chrysostachya. It is a bit of a black sheep of the genus. Whereas most Disa orchids produce a few large, showy flowers, this species produces a spike that is densely packed with minute flowers. They range from orange to red and, like most other bird pollinated flowers, produce no scent. 

Take the time to observe them in the field and you may notice that the malachite sunbird is a frequent visitor. The sunbirds perch themselves firmly on the spike and probe the shallow nectar spurs on each flower. At this point you may be thinking that the pollen sacs, or pollinia, of the orchid are affixed to the beak of the bird but, alas, you would be wrong. 

Closer inspection of the flowers reveal that the morphology and positioning of the pollinia are such that they simply cannot attach to the beak of the bird. The same goes for any potential insect visitors. The plant seems to have assured that only something quite specific can pick up the pollen. To see what is really going on, you would have to take a look at the sunbird's feet. 

That's right, feet. When a sunbird feeds at the flowers of D. chrysostachya, its feet position themselves onto the stiffened lower portion of the flower. This is the perfect spot to come into contact with the sticky pollinia. As the bird feeds, they pick up the pollinia on their claws! The next time the bird lands to feed, it will inevitably deposit that pollen. The orchids seemed to have benefited from the fact that once perched, sunbirds don't often reposition themselves on the flower spike. In this way, self pollination is minimized. A close relative, D. satyriopsis, has also appeared to enter into a pollination with sunbirds in a similar way. 

Though it may seem inefficient, research has shown that this pollination mechanism is quite successful for the orchid.The pollinia themselves stick quite strongly so that no amount of scuffing on branches or preening with beaks can dislodge them. Once pollination has been achieved, each flower is capable of producing thousands upon thousands of seeds.

Photo Credit: Johnson and Brown

Further Reading: [1]