Curly Cucurbits

116334865_794831454385906_6417215606278843611_n.jpg

I’ve grown to really appreciate cucurbits (family Cucurbitaceae) in recent years. From their ambling/climbing habit and often delicious fruits to their beautiful flowers and intimate relationships with a few native bees, this family has a lot to offer. Of course, there are few better ways to get to know plants than by growing them in and around your home and, at least at our place, this summer will go down in history as the summer of the gourd. We are currently growing a handful of species and cultivars and I get a great deal of enjoyment out of watching them grow up the trellis we have provided.

As they climb, cucurbits send out long, thin tendrils (which are actually modified stems) that grab on and wind around any surface they touch. This happens surprisingly quick too. Within only a few minutes of touching a surface, individual tendrils will begin to wind themselves around it. This phenomenon has fascinated people for centuries. I don’t doubt it amused the indigenous cultures that first began cultivating them for food and that amusement continues till this day. Do a web search for cucumber tendrils and you will find countless pictures and blogs showcasing this wonderful anatomical habit.

116150155_650486665838243_8605448845850176117_n.jpg

Despite all the attention, the mechanisms behind this behavior have largely remained a mystery until quite recently. We have known that the initial curling of the tendril is induced by touch. As soon as the cells within the tendril sense contact with a surface, the signal is sent to begin curling. But how do they curl so quickly?

The key to this behavior lies in a two-layered band of specialized cells that run the length of the tendril. Once the signal that the tendril has touched an object has been received, these bands swing into action. One layer of cells will immediately begin to expel water, causing them to contract. Meanwhile, the other layer of cells becomes increasingly stiff and lignified. This creates tension along the length of the tendril, causing it to bend. Oddly enough, this doesn’t happen in the same direction. Take a close look at the tendrils on a cucumber or squash vine and you will notice that each tendril curls in two different directions, separated by a kink or “perversion” (as it is known in the literature) in the middle. This is because the layer of cells on the band that shrinks is different whether you are near the tip or near the base of the tendril.

115881539_680335609224517_2541212037908135950_n.jpg

As many of you reading this are already well aware, the tendrils help to secure the plants as they climb. However, the story is much more interesting than simply anchoring the plants in place. The curling of the tendrils is extremely important when it comes to structural support. If the tendrils did not curl, the plant would be anchored in place with very little wiggle room. As big gusts of wind cause the plant to thrash to and fro or a heavy limb comes crashing down from above, a straight tendril would be far more likely to break under the strain. By adding those opposite twists, the tendrils are able to flex a lot, providing enough movement to keep them from breaking under stress.

If you watch how the tendrils develop over time, their amazing structural support gets even cooler. When stretched, a metal spring looses a lot of its springy-ness. This is not the case for cucurbit tendrils. When stretched, they not only return to their original shape, they curl even tighter. This way, the plant is able to secure itself with varying intensities, allowing for fine tuned adjustments to its structural support. The amount of curling also changes with age. Older tendrils tend to curl more tightly than younger tendrils, especially under strain. As the plant grows, older portions of the stem secure themselves much more strongly via their tendrils. Alternatively, the younger growing portions of the stem need to be a bit more flexible as they anchor themselves to whatever they are climbing on.

116262595_3478832255482487_2699374331765285540_n.jpg

So there you have it. The aesthetically pleasing, curly tendrils of your cucurbits serve a very important function in the growth of the plant. Without them, these plants would not only have a hard time climbing, they would also be knocked down by every minor disturbance. The key to their success as vines lies in highly modified stems with an intriguing band of specialized cells that provide them with a physically sound anchoring mechanism.

Learn more in this video:

Further Reading: [1] [2]

American Bittersweet

Photo by Peter Gorman licensed by CC BY-NC-SA 2.0

Photo by Peter Gorman licensed by CC BY-NC-SA 2.0

As the bright colors of fall start to give way to the dreary grays of winter, people often go looking for ways to bring a little bit of botanical color indoors to enjoy. It is around this time of year that one species in particular starts turning up in flower arrangements, however, it's not the flowers people are interested in but rather the seeds. This species is so popular in arrangements that its numbers in the wild are facing steep declines.

Meet Celastrus scandens, the American bittersweet vine. It hails from the family Celastraceae, which makes it a distant cousins of Euonymus. This lovely climbing vine is native to much to eastern North America and is most at home growing at the edge of woodlots, thickets, and along rocky bluffs and outcroppings. As mentioned, It isn't the flowers of this species that catch the eye but rather the showy seeds. Encased in bright orange capsules, the crimson berry-like fruits are toxic to us mammals but highly sought after by birds. Despite their toxicity, humans nonetheless covet these fruits. Entire vines are cut down and used in arrangements, especially during the months of fall. This has had detrimental effects on wild populations of American bittersweet.

Celastrus_scandens_27297.jpg

To add insult to injury, its Asian cousin, Celastrus orbiculatus, has been introduced to this continent and is running amuck in the wild. Known commonly as Oriental bittersweet, this invasive is quickly outpacing its native cousin throughout much of North America. It would seem that Oriental bittersweet can adapt to a wider range of habitat types than American bittersweet and, where these species co-occur, hybridization has been reported. The hybrid offspring are not only fertile, they also have shorter seed dormancy and are much more vigorous growers than either of the parents.

Photo by MN Department of Agriculture

Photo by MN Department of Agriculture

Unfortunately it can be hard to tell these species apart. However, with a little patience and a decent field guide, differences become apparent. The best diagnostic feature I have found is that American bittersweet carries its flowers and fruit on the terminal ends of the stems whereas Oriental bittersweet carries them in the axils of the leaves.

All in all, American bittersweet is a lovely native vine. Its beauty in our eyes has, like so many other plant species, created some serious survival issues. Coupled with the the threat of its highly aggressive Asian cousin, the future of this wonderful species remains uncertain. That being said, this doesn’t have to remain a trend. The good news is that it does quite well as a garden species and many nurseries are beginning to carry the native over the invasive. If you live in eastern North America, consider using this plant in your landscape. It would certainly help. And, if flower arrangements are something you enjoy, please give American bittersweet a break.

Celastrus_scandens.jpg

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4] [5]

A Passionflower With a Taste for Insects?

Photo by B.navez licensed under the GNU Free Documentation License.

Photo by B.navez licensed under the GNU Free Documentation License.

For a plant to be considered carnivorous, it must possess one or more traits unequivocally adapted for attracting, capturing, and/or digesting prey. It also helps to demonstrate that the absorption of nutrients has a clear positive impact on growth or reproductive effort. For plants like the Venus fly trap or any of the various pitcher plants out there, this distinction is pretty straight forward. For many other species, the line between carnivorous or not can be a little blurry. Take, for instance, the case of the stinking passionflower (Passiflora foetida).

At first glance, P. foetida seems par for the course as far as passionflowers are concerned. It is a vining species native from the southwestern United States all the way down into South America. It enjoys edge habitats where it can scramble up and over neighboring vegetation. It produces large, showy flowers followed by edible fruits. When the foliage is damaged, it emits a strong odor, earning it the specific epithet “foetida.”

Not until you inspect the developing floral buds of this passionflower will the question of carnivory enter into your mind. Covering the developing flowers and eventually the fruit are a series of feathery bracts, which are covered in glandular hairs. The hairs themselves are quite sticky thanks to the secretion of fluids. As insects crawl across the hairs, they become hopelessly entangled and eventually die. So, does this make P. foetida a carnivore?

Photo by B.navez licensed under the GNU Free Documentation License.

Photo by B.navez licensed under the GNU Free Documentation License.

Many different plants produce sticky hairs or glands on their tissues. Often this is a form of defense. Herbivorous insects looking to take a bite out of such a plant either get stuck outright or have their mouth parts completely gummed up in the process. This form of defense seems to work quite well for such plant species so simply trapping insects doesn’t mean the plant is a carnivore. Worth noting, however, is the fact that it appears that many carnivorous plant traits have simply been retooled from defense traits.

The question remains as to what happens to the trapped insects after they are ensnared by P. foetida. Observations in the field suggest that there is more to these sticky hairs than simply defense. This led a team of researchers to look closer at the interactions between P. foetida and insects. What they found is rather fascinating.

It turns out that most of the insects captured by P. foetida bracts are herbivores that would have made an easy meal of the flowers and fruits. However, after getting stuck, the insect bodies quickly decay. Laboratory analyses revealed that indeed, the fluids secreted by the sticky hairs contained lots of digestive enzymes, mainly proteases and acid phosphatases. Still, this does not mean the plant is eating the insects. It makes sense from a defensive standpoint that a plant would not benefit from having lots of rotting corpses stuck to its buds. As such, digesting them removes the possibility of fungal or bacterial attack. To investigate whether P. foetida benefits from trapping insects beyond simply avoiding herbivory, the team needed to know if any nutritional benefit was being had.

Photo by Vvenka1 licensed under CC BY-SA 2.5

Photo by Vvenka1 licensed under CC BY-SA 2.5

The team took amino acids marked with a special carbon isotope and smeared it onto the bracts. Then they waited to see if any of the labelled amino acids showed up in the plant tissues. Indeed they did. The amino acids were absorbed by the bracts and translocated to the  calyx, corolla, anthers, and finally to the developing ovules. This is probably not too surprising  to those of us that spend time growing plants as numerous plant species can uptake at least some nutrients through their leaves. This is why foliar feeding can work as a means of fertilizing potted plants. Nonetheless, these results are enticing as it shows that P. foetida is not only capturing and dissolving insects, it also seems capable of absorbing at least some amino acids from its victims.

So, should we call P. foetida a carnivore? To be honest, I am not sure. Certainly all of the evidence suggests there is more going on than simply defense. However, does garnering the attention of hungry herbivores constitute prey attraction? Certainly other carnivores utilize food deception as a means of prey capture. Does simply being a palatable plant count as a lure? Does absorbing nutrients constitute carnivory? In some instances, yes, however, as mentioned, plenty of plant species can absorb nutrients from organs other than their roots.

I think the main question is whether P. foetida sees a marked increase in growth or reproduction due to the addition of the dead herbivores. What I think we can say is that the sticky bracts surrounding the flowers and fruits serve a dual purpose - defense against herbivores and potentially a nutrient boost as well. If anything, I think this should qualify as a form of protocarnivory.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]  

The Wild World of Rattan Palms

Photo by Eric in SF licensed under CC BY-SA 4.0

Photo by Eric in SF licensed under CC BY-SA 4.0

There are a lot of big organisms out there. A small handful of these are truly massive. When someone mentions big plants, minds will quickly drift to giant sequoias or coastal redwoods. These species are indeed massive. The tallest tree on record is a coastal redwood measuring 369 feet tall. That's a whole lot of tree! What some may not realize is that there are other plants out there that can grow much "taller" than even the tallest redwood. For instance, there is a group of palms that hail from Africa, Asia, and Australasia that grow to staggering lengths albeit without the mass of a redwood.

You are probably quite familiar with some of these palm species, though not as living specimens. If you have ever owned or sat upon a piece of wicker furniture then you were sitting on pieces of a rattan palm. Rattan palms do not grow in typical palm tree fashion. Rattans are climbers, more like vines. All palms grow from a central part of the plant called the heart. They grow as bromeliads do, from meristem tissue in the center of a rosette of leaves. As a rattan grows, its stem lengthens and grabs hold of the surrounding vegetation using some seriously sharp, hooked spikes. For much of their early life they generally sprawl across the forest floor but the real goal of the rattan is to reach up into the canopy where they can access the best sunlight.

Photo by Erwin Bolwidt licensed under CC BY-NC-SA 2.0

Photo by Erwin Bolwidt licensed under CC BY-NC-SA 2.0

Rattans are not a single taxonomic unit. Though they are all palms, at least 13 genera contain palms that exhibit this climbing habit. With over 600 species included in these groups, it goes without saying that there is a lot of variation on the theme. The largest rattan palms hail from the genus Calamus and all but one are native to Asia.

Many species of rattan have whip-like stems that would be easy to miss in a lush jungle. Be aware of your surroundings though, because these spikes are quite capable of ripping clothes and flesh to pieces. The rattans are like any other vine, sacrificing bulk for an easy ride into the light at the expense of whatever it climbs on. Indeed some get so big that they break their host tree. It is this searching, sprawling nature of the rattans that allow them to reach some impressive lengths. Some species of rattan have been reported with stems measuring over 500 feet!

Getting back to what I mentioned earlier about wicker furniture, rattans are a very important resource for the people of the jungles in which they grow. They offer food, building materials, shelter materials, an artistic medium, and a source of economic gain. In many areas, rattans are being heavily exploited as a result. This is bad for both the ecology of the forest and the locals who depend upon these species.

The global rattan trade is estimated at around $4 billion dollars. Because of this, rattans are harvested quite heavily and many are cut at too young of an age to re-sprout meaning little to no recruitment occurs in these areas. There is a lot of work being done by a few organizations to try to set up sustainable rattan markets in the regions that have been hit the hardest. More information can be found at sites like the World Wildlife Fund.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3] [4]

Apocynaceae Ant House

Bullate leaves help the vine clasp to the tree as well as house ant colonies. Photo by Richard Parker licensed under CC BY-NC-SA 2.0

Bullate leaves help the vine clasp to the tree as well as house ant colonies. Photo by Richard Parker licensed under CC BY-NC-SA 2.0

The dogbane family, Apocynaceae, comes in many shapes, sizes, and lifestyles. From the open-field milkweeds we are most familiar with here in North America to the cactus-like Stapeliads of South Africa, it would seem that there is no end to the adaptive abilities of this family. Being an avid gardener both indoors and out, the diversity of Apocynaceae means that I can be surrounded by these plants year round. My endless quest to grow new and interesting houseplants was how I first came to know a genus within the family that I find quite fascinating. Today I would like to briefly introduce you to the Dischidia vines.

The genus Dischidia is native to tropical regions of China. Like its sister genus Hoya, these plants grow as epiphytic vines throughout the canopy of warm, humid forests. Though they are known quite well among those who enjoy collecting horticultural curiosities, Dischidia as a whole is relatively understudied. These odd vines do not attach themselves to trees via spines, adhesive pads, or tendrils. Instead, they utilize their imbricated leaves to grasp the bark of the trunks and branches they live upon.

The odd, bulb-like leaves of the urn vine (Dischidia rafflesiana) Photo by Bernard DUPONT licensed under CC BY-SA 2.0

The odd, bulb-like leaves of the urn vine (Dischidia rafflesiana) Photo by Bernard DUPONT licensed under CC BY-SA 2.0

One thing we do know about this genus is that most species specialize in growing out of arboreal ant nests. Ant gardens, as they are referred to, offer a nutrient rich substrate for a variety of epiphytic plants around the world. What's more, the ants will visciously defend their nests and thus any plants growing within.

The flowers of  Dischidia ovata Photo by Krzysztof Ziarnek, Kenraiz licensed under CC BY-SA 4.0

The flowers of Dischidia ovata Photo by Krzysztof Ziarnek, Kenraiz licensed under CC BY-SA 4.0

Some species of Dischidia take this relationship with ants to another level. A handful of species including D. rafflesiana, D. complex, D. major, and D. vidalii produce what are called "bullate leaves." These leaves start out like any other leaf but after a while the edges stop growing. This causes the middle of the leaf to swell up like a blister. The edges then curl over and form a hollow chamber with a small entrance hole.

Photo by Krzysztof Ziarnek, Kenraiz licensed under CC BY-SA 4.0

These leaves are ant domatia and ant colonies quickly set up shop within the chambers. This provides ample defense for the plant but the relationship goes a little deeper. The plants produce a series of roots that crisscross the inside of the leaf chamber. As ant detritus builds up inside, the roots begin to extract nutrients. This is highly beneficial for an epiphytic plant as nutrients are often in short supply up in the canopy. In effect, the ants are paying rent in return for a place to live.

Growing these plants can take some time but the payoff is worth. They are fascinating to observe and certainly offer quite a conversation piece as guests marvel at their strange form.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1]

How a Giant Parasitic Orchid Makes a Living

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Imagine a giant vine with no leaves and no chlorophyll scrambling over decaying wood and branches of a warm tropical forest. As remarkable as that may seem, that is exactly what Erythrorchis altissima is. With stems that can grow to upwards of 10 meters in length, this bizarre orchid from tropical Asia is the largest mycoheterotrophic plant known to science.

Mycoheterotrophs are plants that obtain all of their energy needs by parasitizing fungi. As you can probably imagine, this is an extremely indirect way for a plant to make a living. In most instances, this means the parasitic plants are stealing nutrients from the fungi that were obtained via a partnership with photosynthetic plants in the area. In other words, mycoheterotrophic plants are indirectly stealing from photosynthetic plants.

In the case of E. altissima, this begs the question of where does all of the carbon needed to build a surprising amount of plant come from? Is it parasitizing the mycorrhizal network associated with its photosynthetic neighbors or is it up to something else? These are exactly the sorts of questions a team from Saga University in Japan wanted to answer.

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

All orchids require fungal partners for germination and survival. That is one of the main reasons why orchids can be so finicky about where they will grow. Without the fungi, especially in the early years of growth, you simply don't have orchids. The first step in figuring out how this massive parasitic orchid makes its living was to identify what types of fungi it partners with. To do this, the team took root samples and isolated the fungi living within.

By looking at their DNA, the team was able to identify 37 unique fungal taxa associated with this species. Most surprising was that a majority of those fungi were not considered mycorrhizal (though at least one mycorrhizal species was identified). Instead, the vast majority of the fungi associated with with this orchid are involved in wood decay.

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

Stems climbing on fallen dead wood (a) or on standing living trees (b). A thick and densely branched root clump (c) and thin and elongate roots (d) [Source]

To ensure that these wood decay fungi weren't simply partnering with adult plants, the team decided to test whether or not the wood decay fungi were able to induce germination of E. altissima seeds. In vitro germination trials revealed that not only do these fungi induce seed germination in this orchid, they also fuel the early growth stages of the plant. Further tests also revealed that all of the carbon and nitrogen needs of E. altissima are met by these wood decay fungi.

These results are amazing. It shows that the largest mycoheterotrophic plant we know of lives entirely off of a generalized group of fungi responsible for the breakdown of wood. By parasitizing these fungi, the orchid has gained access to one of the largest pools of carbon (and other nutrients) without having to give anything back in return. It is no wonder then that this orchid is able to reach such epic proportions without having to do any photosynthesizing of its own. What an incredible world we live in!

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo by mutolisp licensed under CC BY-NC-SA 2.0

Photo Credits: [1] [2]

Further Reading: [1]

Rhizanthes lowii

Photo Credit: Ch'ien C. Lee - www.wildborneo.com.my/photo.php?f=cld1500900.jpg

Imagine hiking through the forests of Borneo and coming across this strange object. It's hairy, it's fleshy, and it smells awful. With no vegetative bits lying around, you may jump to the conclusion that this was some sort of fungus. You would be wrong. What you are looking at is the flower of a strange parasitic plant known as Rhizanthes lowii.

Rhizanthes lowii is a holoparasite. It produces no photosynthetic tissues whatsoever. In fact, aside from its bizarre flowers, its doesn't produce anything that would readily characterize it as a plant. In lieu of stems, leaves, and roots, this species lives as a network of mycelium-like cells inside the roots of their vine hosts. Only when it comes time to flower will you ever encounter this species (or any of its relatives for that matter).

The flowers are interesting structures. Their sole function, of course, is to attract their pollinators, which in this case are carrion flies. As one would imagine, the flowers add to their already meaty appearance a smell that has been likened to that of a rotting corpse. Even more peculiar, however, is the fact that these flowers produce their own heat. Using a unique metabolic pathway, the flower temperature can rise as much as 7 degrees above ambient. Even more strange is the fact that the flowers seem to be able to regulate this temperature. Instead of a dramatic spike followed by a gradual decrease in temperature, the flowers of R. lowii are able to maintain this temperature gradient throughout the flowering period.

Photo Credit: Ch'ien C. Lee - www.wildborneo.com.my/photo.php?f=cld1500900.jpg

There could be many reasons for doing this. Heat could enhance the rate of floral development. This is a likely possibility as temperature increases have been recorded during bud development. It could also be used as a way of enticing pollinators, which can use the flower to warm up. This seems unlikely given its tropical habitat. Another possibility is that it helps disperse its odor by volatilizing the smelly compounds. In a similar vein, it may improve the carrion mimicry. Certainly this may play a role, however, flies don't seem to have an issue finding carrion that has cooled to ambient temperature. Finally, it has also been suggested that the heat may improve fertilization rates. This also seems quite likely as thermoregulation has been shown to continue after the flowers have withered away.

Regardless of its true purpose, the combination of lifestyle, appearance, and heat producing properties of this species makes for a bizarrely spectacular floral encounter. To see this plant in the wild would be a truly special event.

Photo Credit: Ch'ien C. Lee - www.wildborneo.com.my/photo.php?f=cld1500900.jpg

Further Reading: [1] [2]