Krassilovia: An Amazing Cretaceous Conifer

Krassilovia mongolica.jpg

Reconstructing extinct organisms based on fossils is no simple task. Rarely do paleontologists find complete specimens. More often, reconstructions are based on fragments of individuals found either near one another or at least in similar rock formations. This is especially true for plants as their growth habits frequently result in fragmentary fossilization. As such, fossilized plant remains of a single species are often described as distinct species until subsequent detective work pieces together a more complete picture.

Such was the case for the fossil remains of what were described as Krassilovia mongolica and Podozamites harrisii. Hailing from the Early Cretaceous (some 100-120 million years ago), Krassilovia was only known from oddly spiny cone scales and Podozamites was only known from strap-shaped leaves found in a remote region of Mongolia. Little evidence existed to suggest they belonged to the same plant. That is, until these structures were analyzed using scanning electron micrographs.

(A–C) Articulated seed cones, (D) Isolated cone axis, (E) Incomplete leafy shoot showing a cluster of three attached leaves, (F) Three detached strap-shaped leaves, G) Detail of A showing tightly imbricate interlocking bract-scale complexes, (H) Det…

(A–C) Articulated seed cones, (D) Isolated cone axis, (E) Incomplete leafy shoot showing a cluster of three attached leaves, (F) Three detached strap-shaped leaves, G) Detail of A showing tightly imbricate interlocking bract-scale complexes, (H) Detail of leaf apex showing converging veins, (I) Three isolated bract-scale complexes showing abaxial (top) and adaxial (bottom) surfaces, (J) Two isolated seeds showing narrow wings. [SOURCE]

These fossilized plant remains were preserved in such detail that microscopic anatomical features such as stomata were visible under magnification. By studying the remains of these plants as well as others, scientists discovered some amazing similarities in the stomata of Krassilovia and Podozamites. Unlike other plant remains associated with those formations, the Krassilovia cone scales and Podozamites leaves shared the exact same stomate morphology. Though not without some uncertainty, the odds that these two associated structures would share this unique morphological trait by chance is slim and suggests that these are indeed parts of the same plant.

The amazing discoveries do not end with stomata either. After countless hours of searching, fully articulated Krassilovia cones were eventually discovered, which finally put the strange spiky cone scales into context. It turns out those spiked scales interlocked with one another, with the two bottom spikes of one scale interlocking with the three top spikes of the scale below it. In life, such interlocking may have helped protect the developing seeds within until they had matured enough to be released. Also, the sheer volume of cone scales coupled with other minute anatomical details I won’t go into here indicate that, similar to Abies and Cedrus cones, Krassilovia cones completely fell apart when fully ripe.

Though not related, the cone scales of the extinct Krassilovia (left) show similarities with the cone scales of modern day Cryptomeria species (right).

Though not related, the cone scales of the extinct Krassilovia (left) show similarities with the cone scales of modern day Cryptomeria species (right).

Interestingly, the ability to resolve microscopic structures in these fossils has also provided insights into some modern day taxonomic confusion. It turns out that Krassilovia shares many minute anatomical similarities with present day Gnetales. Gnetales really challenge our perception of gymnosperms and their superficial resemblance to angiosperms have led many to suggest that they represent a clade that is sister to flowering plants. However, more recent molecular work has placed the extant members of Gnetales as sister to the pines. Evidence of shared morphological features between extinct conifers like Krassilovia and modern day Gnetales add some interesting support to this hypothesis. Until more concrete evidence is described and analyzed, the true evolutionary relationships among these groups will remain the object of heated debate for the foreseeable fture.

What we can say is that Krassilovia mongolica was one remarkable conifer. Its unique morphology clearly demonstrates that conifers were once far more diverse in form and function than they are currently. Even the habitat in which Krassilovia once lived is not the kind of place you can find thriving conifer communities today. Krassilovia once grew in a swampy habitat. However, whereas only a few extant conifers enjoy swamps, Krassilovia once shared its habitat with a wide variety of conifer species, the likes of which we are only just beginning to appreciate. I for one am extremely excited to see what new fossil discoveries will uncover in the future.

LISTEN TO EPISODE 300 OF THE IN DEFENSE OF PLANTS PODCAST TO LEARN MORE ABOUT THIS FOSSIL AND THE ECOSYSTEM IN WHICH IT ONCE EXISTED.

Photo Credits: [1] [2] [3]

Further Reading: [1]



Southern Beeches and Biogeography

fagus01.jpg

If you spend any time learning about paleontology, you are bound to come across at least one reference to the southern beeches (genus Nothofagus). This remarkable and ecologically important group of trees can be found growing throughout the Southern Hemisphere at high latitudes in South America, Australia, New Zealand, New Guinea, and New Caledonia. Not only are they prominent players in the forests in which they grow, their fossil history has provided scientists with invaluable data on plate tectonics and biogeography.

Southern beeches may not be the tallest trees in any forest but that doesn’t mean they aren’t impressive. Numbering around 37 species, southern beeches have conquered a range of climate zones from temperate to tropical. Those living in lowland tropical forests tend to be evergreen, holding onto their leaves throughout the year whereas those living in temperate or montane habitats have evolved a deciduous habit. Some species of southern beech are also known for their longevity, with individuals estimated to be in excess of 500 years in age.

Nothofagus alpina

Nothofagus alpina

Anyone familiar with the true beeches (genus Fagus) will quickly recognize many similarities among these genera. From their toothy leaves to their triangular nuts, these trees are strikingly similar in appearance. Indeed, for much of their botanical history, southern beeches were included in the beech family (Fagaceae). However, recent molecular work has revealed that the southern beeches are genetically distinct enough to warrant their own family - Nothofagaceae.

The beech-like fruits of Nothofagus obliqua var. macrocarpa

The beech-like fruits of Nothofagus obliqua var. macrocarpa

As mentioned, the southern beeches, both extant and extinct, have been important players in our understanding of plate tectonics. Their modern day distribution throughout the Southern Hemisphere seems to hint at a more concentrated distribution at some point in the past. All of the continents and islands on which they are found today were once part of the supercontinent of Gondwana, which has led many to suggest that the southern beech family arose before Gondwana broke apart during the Jurassic, with ancestors of extant species riding the southern land masses to their modern day positions. Indeed, the paleo record seems to support this quite well.

Fall colors of Nothofagus cunninghamii.

Fall colors of Nothofagus cunninghamii.

The southern beeches have an impressive fossil record that dates back some 80 million years to the late Cretaceous. Their fossils have been found throughout many of the Southern Hemisphere continents including the now-frozen Antarctica. It would seem that the modern distribution of these trees is the result of plate tectonics rather than the movement of seeds across oceans. This is bolstered by lines of evidence such as seed dispersal. Southern beech nuts are fairly large and do not show any adaptations for long distance dispersal, leading many to suggest that they simply cannot ocean hop without serious help from other forms of life.

Nothofagus fusca

Nothofagus fusca

However, life is rarely so simple. Recent molecular work suggests that continental drift can’t explain the distribution of every southern beech species. By studying trees growing in New Zealand and comparing them to those growing in Australia and Tasmania, scientists have discovered that these lineages are far too young to have originated before the breakup of Gondwana. As such, the southern beeches of Austrialasia more likely got to their current distributions via long distance dispersal events. Exactly what allowed their seeds to cross the Tasman Sea is up for debate, but certainly not impossible given the expanse of time available for rare events to occur. Regardless of where anyone stands on this recent evidence, it nonetheless suggests that the biogeographic history of the southern beech family isn’t as clear cut as once thought.

Nothofagus fusca

Nothofagus fusca

Unfortunately, while southern beeches hold a prominent place in the minds of naturalists, the same cannot be said for the rest of the world. Little care has been given to their scientific and ecological importance and massive quantities of these trees are logged each and every year. Today it is estimated that 30% of all southern beech species are threatened with extinction. Luckily, large portions of the remaining populations for these trees are growing on protected lands. Also, because of their scientific importance, numerous southern beeches can be found growing in botanical collections and their seeds are well represented in seed banks. Still, southern beeches and the forests they comprise are worthy of respect and protection.

Photo Credits: [1] [2] [3] [4] [5] [6]

Further Reading: [1] [2] [3]

A Herbaceous Conifer From the Triassic

aleth1.jpg

It is hard to make broad generalizations about groups of related organisms. There are always exceptions to any rule. Still, there are some “facts” we can throw around that seem to apply pretty well to specific branches on the tree of life. For instance, all of the gymnosperm lineages we share our planet with today are woody, relatively slow to reach sexual maturity, and are generally long-lived. This has not always been the case. Fossil discoveries from France suggest that in the past, gymnosperms were experimenting with a more herbaceous lifestyle.

The fossils in question were discovered in eastern France back in the 1800’s. The strata from which they were excavated dates back to the Middle Triassic, some 247 million years ago. Immortalized in these rocks were numerous spindly plants with strap-like leaves and a few branches, each ending in what look like tiny cones. Early interpretations suggested that these may represent an extinct lycopod, however, further investigation suggested something very surprising - a conifer with an herbaceous growth habit.

Indeed, thanks to even more scrutiny, it is now largely agreed upon that what was preserved in these rocks were essentially herbaceous conifers. The fossils were given the name Aethophyllum stipulare. They are wonderfully complete, depicting roots, shoots, leaves, and reproductive organs. Moreover, the way in which they were fossilized preserved lots of fine-scale anatomical details. Taken together, there are plenty of clues available that allow paleobotanists to say a lot about how this odd conifer made a living.

For starters, they were not very big plants. Not a single specimen has been found that exceeds 2 meters (6.5 ft) in height. The main stem of these conifers only seem to branch a couple of times. Cones were formed at the tips of the upper branches and not a single specimen has been found that depicts subsequent growth following cone formation. This suggests that Aethophyllum exhibited determinate growth, meaning that individuals grew to a certain size, reproduced, and did not continue to grow after that. Female cones were situated at the tips of the upper most branches and male cones were situated at the tips of lower shoots. The smallest reproductive individuals that have been unearthed are only 30 cm (11 in) in height, which suggests that Aethophyllum  was capable of reproducing within a few months of germination.

Artists reconstruction of Aethophyllum stipulare

Artists reconstruction of Aethophyllum stipulare

Amazingly, researchers were also able to extract fossilized pollen and seeds from some of the Aethophyllum cones. The pollen itself is saccate, much like what we see in many extant conifers. By comparing the morphology of the pollen extracted from the cones to other fossil pollen records, researchers now feel confident that Aethophyllum is the source of pollen grains discovered in sediments from western, central, and southern Europe, Russia, Northern Africa, and China, suggesting that Aethophyllum was pretty wide spread during the Middle Triassic. Aethophyllum seeds were small, ellipsoid, and were not winged, likely germinating a short distance from the parent.

The stems of Aethophyllum are interesting in the own right. Thanks to their preservation, cross sections have been made and they reveal that these plants only ever produced secondary tracheids and primary xylem. The only place on the plant where any signs of woody secondary xylem occur are at the base of the cones. This adds further confirmation that Aethophyllum was herbaceous at the onset of sexual maturity.

Another intriguing aspect of the stem is the presence of numerous large air spaces within the stem pith. Today, this anatomical feature is present in plants like bamboo, Equisetum, and the flowering stalks of Agave, all of which exhibit alarmingly fast growth rates for plants. This suggests that not only did Aethophyllum reproduce early in its life, it also likely grew extremely fast.

1. Smallest fertile plant in the Grauvogel and Gall collections, with two stems extending from the root, and terminal ovulate cone (OC) on one branch (scale bar=10 cm). 2. Cross-section of stem in the Grauvogel and Gall collections showing cauline b…

1. Smallest fertile plant in the Grauvogel and Gall collections, with two stems extending from the root, and terminal ovulate cone (OC) on one branch (scale bar=10 cm). 2. Cross-section of stem in the Grauvogel and Gall collections showing cauline bundles with scanty wood (at left, top and right) surrounding large pith with large, aerenchymatous lacunae and interspersed pith parenchyma cells. Vascular cambium, phloem, and more peripheral tissues are not preserved (scale bar=200 μm). 3.Seedling in the Grauvogel and Gall collections showing primary root (R), cotyledons (C) and stem (S) with apically borne leaves (scale bar=10 cm). Quoted from SOURCE

Mature Aethophyllum aren’t the only fossils available either. Many seedlings have been discovered in close proximity to the adults. Seedlings were also exquisitely preserved, depicting hypocotyl, a primary root system, two two-veined cotyledons, and a short stem with four-veined leaves arranged in a helix. The fact that seedlings and adults were found in such close proximity lends to the idea that Aethophyllum populations were made up of multi-aged stands, not unlike some of the early successional plants we find in disturbed habitats today.

The sediments in which these plants were fossilized can also tell us something about the habitats in which Aethophyllum grew. The rock layers are made up of a mix of sediments typical of what one would find in a flood plain or delta. Also, Aethophyllum aren’t the only plant remains discovered. Many species known to grow in regularly disturbed, flood-prone habitats have also been found. Taken together these lines of evidence suggest that Aethophyllum was similar to what we would expect from herbaceous plants growing in similar habitats today. They grew fast, reproduced early, and had to jam as many generations in before the next flood ripped through and hit the reset button.

Aethophyllums small size, lack of wood, and rapid growth rate all point to a ruderal lifestyle. Today, this niche is largely filled by angiosperms. No conifers alive today can claim such territories. The discovery of Aethophyllum demonstrates that this was not always the case. The fact that pollen has been found far outside of France suggests that this ruderal lifestyle worked quite well for Aethophyllum.

The terrestrial habitats of the Middle Triassic were dominated by the distant relatives of modern day ferns, lycophytes, and gymnosperms. Needless to say, it was a very different world than anything that we are familiar with today. However, that does not mean that the pressures of natural selection were necessarily different. Aethophyllum is evidence that specific selection pressures, in this case regular flood disturbance, select for similar traits in plants through time. Why Aethophyllum went extinct is anyone’s guess. Despite how well they have been preserved, there is still a lot of mystery surrounding this plant.

Photo Credit: [1]

Further Reading: [1] [2] [3] [4]



The Rise and Fall of the Scale Trees

Photo by Ghedoghedo licensed under CC BY-SA 3.0

Photo by Ghedoghedo licensed under CC BY-SA 3.0

If I had a time machine, the first place I would visit would be the Carboniferous. Spanning from 358.9 to 298.9 million years ago, this was a strange time in Earth’s history. The continents were jumbled together into two great landmasses - Laurasia to the north and Gondwana to the south and the equatorial regions were dominated by humid, tropical swamps. To explore these swamps would be to explore one of the most alien landscapes this world has ever known.

The Carboniferous was the heyday for early land plants. Giant lycopods, ferns, and horsetails formed the backbone of terrestrial ecosystems. By far the most abundant plants during these times were a group of giant, tree-like lycopsids known as the scale trees. Scale trees collectively make up the extinct genus Lepidodendron and despite constantly being compared to modern day club mosses (Lycopodiopsida), experts believe they were more closely related to the quillworts (Isoetopsida).

Carboniferous coal swamp reconstruction dating back to the 1800’s

Carboniferous coal swamp reconstruction dating back to the 1800’s

It is hard to say for sure just how many species of scale tree there were. Early on, each fragmentary fossil was given its own unique taxonomic classification; a branch was considered to be one species while a root fragment was considered to be another, and juvenile tree fossils were classified differently than adults. As more complete specimens were unearthed, a better picture of scale tree diversity started to emerge. Today I can find references to anywhere between 4 and 13 named species of scale tree and surely more await discovery. What we can say for sure is that scale tree biology was bizarre.

The name “scale tree” stems from the fossilized remains of their bark, which resembles reptile skin more than it does anything botanical. Fossilized trunk and stem casts are adorned with diamond shaped impressions arranged in rows of ascending spirals. These are not scales, of course, but rather they are leaf scars. In life, scale trees were adorned with long, needle-like leaves, each with a single vein for plumbing. Before they started branching, young trees would have resembled a bushy, green bottle brush.

As scale trees grew, it is likely that they shed their lower leaves, which left behind the characteristic diamond patterns that make their fossils so recognizable. How these plants achieved growth is rather fascinating. Scale tree cambium was unifacial, meaning it only produced cells towards its interior, not in both directions as we see in modern trees. As such, only secondary xylem was produced. Overall, scale trees would not have been very woody plants. Most of the interior of the trunk and stems was comprised of a spongy cortical meristem. Because of this, the structural integrity of the plant relied on the thick outer “bark.” Many paleobotanists believe that this anatomical quirk made scale trees vulnerable to high winds.

Scale trees were anchored into their peaty substrate by rather peculiar roots. Originally described as a separate species, the roots of these trees still retain their species name. Paleobotanists refer to them as “stigmaria” and they were unlike most roots we encounter today. Stigmaria were large, limb-like structures that branched dichotomously in the soil. Each main branch was covered in tiny spots that were also arranged in rows of ascending spirals. At each spot, a rootlet would have grown outward, likely partnering with mycorrhizal fungi in search of water and nutrients.

A preserved Lepidodendron stump

A preserved Lepidodendron stump

Eventually scale trees would reach a height in which branching began. Their tree-like canopy was also the result of dichotomous branching of each new stem. Amazingly, the scale tree canopy reached staggering heights. Some specimens have been found that were an estimated 100 ft (30 m) tall! It was once thought that scale trees reached these lofty heights in as little as 10 to 15 years, which is absolutely bonkers to think about. However, more recent estimates have cast doubt on these numbers. The authors of one paper suggest that there is no biological mechanism available that could explain such rapid growth rates, concluding that the life span of a typical scale tree was more likely measured in centuries rather than years.

Regardless of how long it took them to reach such heights, they nonetheless would have been impressive sites. Remarkably, enough of these trees have been preserved in situ that we can actually get a sense for how these swampy habitats would have been structured. Whenever preserved stumps have been found, paleobotanists remark on the density of their stems. Scale trees did not seem to suffer much from overcrowding.

leps.PNG

The fact that they spent most of their life as a single, unbranched stem may have allowed for more success in such dense situations. In fact, those that have been lucky enough to explore these fossilized forests often comment on how similar their structure seems compared to modern day cypress swamps. It appears that warm, water-logged conditions present similar selection pressures today as they did 350+ million years ago.

Like all living things, scale trees eventually had to reproduce. From the tips of their dichotomosly branching stems emerged spore-bearing cones. The fact that they emerge from the growing tips of the branches suggests that each scale tree only got one shot at reproduction. Again, analyses of some fossilized scale tree forests suggests that these plants were monocarpic, meaning each plant died after a single reproductive event. In fact, fossilized remains of a scale tree forest in Illinois suggests that mass reproductive events may have been the standard for at least some species. Scale trees would all have established at around the same time, grown up together, and then reproduced and died en masse. Their death would have cleared the way for their developing offspring. What an experience that must have been for any insect flying around these ancient swamps.

The fossilized strobilus of a Lepidodendron. Photo by Verisimilus T licensed under the GNU Free Documentation License.

The fossilized strobilus of a Lepidodendron. Photo by Verisimilus T licensed under the GNU Free Documentation License.

Compared to modern day angiosperms, the habits of the various scale trees may seem a bit inefficient. Nonetheless, this was an extremely successful lineage of plants. Scale trees were the dominant players of the warm, humid, equatorial swamps. However, their dominance on the landscape may have actually been their downfall. In fact, scale trees may have helped bring about an ice age that marked the end of the Carboniferous.

You see, while plants were busy experimenting with building ever taller, more complex anatomies using compounds such as cellulose and lignin, the fungal communities of that time had not yet figured out how to digest them. As these trees grew into 100 ft monsters and died, more and more carbon was being tied up in plant tissues that simply weren’t decomposing. This lack of decomposition is why we humans have had so much Carboniferous coal available to us. It also meant that tons of CO2, a potent greenhouse gas, were being pulled out of the atmosphere millennia after millennia.

A fossilized root or “stigmaria”. Photo by Verisimilus T licensed under CC BY-SA 3.0

A fossilized root or “stigmaria”. Photo by Verisimilus T licensed under CC BY-SA 3.0

As atmospheric CO2 levels plummeted and continents continued to shift, the climate was growing more and more seasonal. This was bad news for the scale trees. All evidence suggests that they were not capable of keeping up with the changes that they themselves had a big part in bringing about. By the end of the Carboniferous, Earth had dipped into an ice age. Earth’s new climate regime appeared to be too much for the scale trees to handle and they were driven to extinction. The world they left behind was primed and ready for new players. The Permian would see a whole new set of plants take over the land and would set the stage for even more terrestrial life to explode onto the scene.

It is amazing to think that we owe much of our industrialized society to scale trees whose leaves captured CO2 and turned it into usable carbon so many millions of years ago. It seems oddly fitting that, thanks to us, scale trees are once again changing Earth’s climate. As we continue to pump Carboniferous CO2 into our atmosphere, one must stop to ask themselves which dominant organisms are most at risk from all of this recent climate change?

Photo Credits: [1] [2] [4] [5] [6] [7]

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]

The Japanese Umbrella Pine

Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

Photo by Dr. Scott Zona licensed under CC BY-NC 2.0

My first impression of the Japanese umbrella pine was that I was looking at a species of yew (Taxus spp.). Sure, its features were a bit more exaggerated than I was used to but what do I know? Trying to understand tree diversity is a recent development in my botanical obsession so I don’t have much to base my opinions on. Regardless, I am glad I gave the little sapling I was looking at a closer inspection. Turns out, the Japanese umbrella pine is most definitely not a yew. It is actually unique in its taxonomic position as the only member of the family Sciadopityaceae.

The Japanese umbrella pine goes by the scientific name of Sciadopitys verticillata. Both common and scientific names hint at the whorled arrangements of its “leaves.” I place leaves in quotes because they are not leaves at all. One of the most remarkable features of this tree is the fact that those whorled leaves are actually thickened, photosynthetic extensions of the stem known as “cladodes.”

Those tiny bumps along the stems are actually highly reduced leaves whereas the whorls of photosynthetic “leaves” are actually modified extensions of the stem called “cladodes.” Photo by Steven Severinghaus licensed under CC BY-NC-SA 2.0

Those tiny bumps along the stems are actually highly reduced leaves whereas the whorls of photosynthetic “leaves” are actually modified extensions of the stem called “cladodes.” Photo by Steven Severinghaus licensed under CC BY-NC-SA 2.0

Photo by KENPEI licensed under the GNU Free Documentation License.

Photo by KENPEI licensed under the GNU Free Documentation License.

Photo by James licensed under CC BY 2.0

Photo by James licensed under CC BY 2.0

It seems that the true leaves of the Japanese umbrella pine have, through evolutionary time, been reduced to tiny, brown scales that clasp the stems. I am not sure what evolutionary advantage(s) cladodes infer over leaves, however, at least one source suggested that cladodes may have fewer stomata and therefore can help to reduce water loss. Until someone looks deeper into this mystery, we cannot say for sure.

As a tree, the Japanese umbrella pine is slow growing. Records show that young trees can take upwards of a decade to reach average human height. However, given time, the Japanese umbrella pine can grow into an impressive specimen. In the forests of Japan, it is possible to come across trees that are 65 to 100 ft (20 – 35 m) tall. It was once wide spread throughout much of southern Japan, however, an ever-increasing human population has seen that range reduced.

A 49.5 million years old fossil of a Sciadopitys cladode. Photo by Kevmin licensed under CC BY-SA 3.0

A 49.5 million years old fossil of a Sciadopitys cladode. Photo by Kevmin licensed under CC BY-SA 3.0

The gradual reduction of this species is not solely the fault of humans. Fossil evidence shows that the genus Sciadopitys was once wide spread throughout parts of Europe and Asia as well. Whereas the current diversity of this genus is limited to a single species, fossils of at least three extinct species have been found in rocks dating back to the Triassic Period, some 230 million years ago. It would appear that this obscure conifer family, like so many other gymnosperm lineages, has been on the decline for quite some time.

Despite the obscure strangeness of the Japanese umbrella tree, it has gained considerable popularity as a unique landscape tree. Because it hails from a relatively cool regions of Japan, the Japanese umbrella tree adapts quite well to temperate climates around the globe. Enough people have grown this tree that some cultivars even exist. Whether you see it as a specimen in an arboretum or growing in the wild, know that you are looking at something quite special. The Japanese umbrella tree is a throwback to the days when gymnosperms were the dominant plants on the landscape and we are extremely lucky that it made it through to our time.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3]

Fossils Shine Light On the History of Gall-Making Wasps

M J Richardson / Common spangle galls / CC BY-SA 2.0

M J Richardson / Common spangle galls / CC BY-SA 2.0

We can learn a lot about life on Earth from the fossil record. I am always amazed by the degree of scrutiny involved in collecting data from these preserved remains. Take, for instance, the case of gall-making wasp fossils found in western North America. A small collection of fossilized oak leaves is giving researchers insights into the evolutionary history of oaks and the gall-making wasps they host.

Oaks interact with a bewildering array of insects. Many of these are gall-making wasps in the family Cynipidae. Dozens of different wasp species can be found on a single oak tree. Female wasps lay their eggs inside developing oak tissues and the larvae release hormones and other chemicals that cause galls to form. Galls are essentially edible nursery chambers. Other than their bizarre shapes and colors, the compounds released by the wasp larvae reduce the chemical defenses of the oak and increase the relative nutrition of the tissues themselves. Often, these relationships are precise, with specific wasp species preferring specific oak species. But when did these relationships arise? Why are oaks so popular? What can fossil evidence tell us about this incredible relationship?

Photo by Beentree licensed under CC BY-SA 4.0

Photo by Beentree licensed under CC BY-SA 4.0

Though scant, the little fossil evidence of oak galls can tell us a lot. For starters, we know that gall-making wasps whose larvae produce structures similar to that of the Cynipids have been around since at least the late Cretaceous, some 100 million years ago. However, it is hard to say for sure exactly who made these galls and exactly what taxonomic affinity the host plant belongs to. More conclusive Cynipid gall fossils appear again in the Eocene and continue to pop up in the fossil record throughout the Oligocene and well into the Miocene (33 - 23 million years ago).

Miocene aged fossils are where things get a little bit more conclusive. Fossil beds located in the western United States have turned up fossilized oak leaves complete with Cynipid galls. The similarity of these galls to those of some present day species is incredible. It demonstrates that these relationships arose early on and have continued to diversify ever since. What's more, thanks to the degree of preservation in these fossil beds, researchers are able to make some greater conclusions about why gall-making wasps and oaks seem to be so intertwined.

Holotype of Antronoides cyanomontanus galls on fossilized leaves of Quercus simulata. 1) Impression of the abaxial surface of the leaf, showing the galls extending into the matrix. 2) Galls showing close association with secondary veins. 3) Gall sho…

Holotype of Antronoides cyanomontanus galls on fossilized leaves of Quercus simulata. 1) Impression of the abaxial surface of the leaf, showing the galls extending into the matrix. 2) Galls showing close association with secondary veins. 3) Gall showing the impression of rim-like base partially straddling the secondary vein. 4) Close-up of gall attached at margin extending down into the matrix. 5) Gall uncovered revealing spindle-shaped morphology.

1) Xanthoteras clavuloides galls on fossilized Quercus lobata, showing gall attached to secondary vein. Specimen in California Academy of Sciences Entomology collection, San Francisco. 2) Two galls of attached to a secondary vein showing overlap of …

1) Xanthoteras clavuloides galls on fossilized Quercus lobata, showing gall attached to secondary vein. Specimen in California Academy of Sciences Entomology collection, San Francisco. 2) Two galls of attached to a secondary vein showing overlap of their bases. Specimen in California Academy of Sciences Entomology Collection, San Francisco. 3) Three galls collected from leaf of California Quercus lobata showing clavate shape and expanded, ring-like base. 4) Gall showing the annulate or ribbed aspect of the base, which is similar to bases of Antronoides cyanomontanus and A. polygonalis. 5) Galls showing clavate shape, pilose and nonpilose surfaces, and bases.

Gall-making wasps seem to diversify at a much faster rate in xeric climates. The fossil records during this time show that mesic tree speciess were gradually being replaced by more xeric species like oaks. Wasps seem to prefer these drier environments and the thought is that such preferences have to do with disease and parasite loads.

Again, galls a large collections of nutrient-rich tissues that are low in defense compounds. Coupled with the juicy grub at their center, it stands to reason that galls make excellent sites of infection for fungi and other parasites. By living in drier habitats, it is believed that gall-making wasps are able to escape these environmental pressures that would otherwise plague them in wetter habitats. The fossil evidence appears to support this hypothesis and today we see similar patterns. White oaks are especially drought tolerant and its this group of oaks that host the highest diversity of gall-making wasps.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3]

The First Trees Ripped Themselves Apart To Grow

Illustration by Falconaumanni licensed under CC BY-SA 3.0

Illustration by Falconaumanni licensed under CC BY-SA 3.0

A new set of fossil discoveries show that the evolutionary arms race that are forests started with plants that literally had to rip themselves apart in their battle for the canopy. The first forests on this planet arose some 385 million years ago and were unlike anything we know today. They consisted of a clade of trees known scientifically as Cladoxylopsids, which have no living representatives in these modern times. How these trees lived and grew has remained a mystery since their fossilized trunks were first discovered but a new set of fossils from China reveals that these trees were unique in more ways than one.

Laying eyes on a full grown Cladoxylopsid would be a strange experience to say the least. Their oddly swollen base would gradually taper up a trunk that stretched some 10 to 12 meters (~30 - 40 feet) into a canopy of its relatives. They had no leaves either. Instead, their photosynthetic organs consisted of branch-like growths that were covered in twig-like projections. Whereas most fossils revealed great detail about their outward appearance, we have largely been in the dark on what their internal anatomy was like. Excitingly, a set of exquisitely preserved fossils from Xinjiang, China has changed that. What they reveal about these early trees is quite remarkable.

As it turns out, the trunks of these early trees were hollow. Unlike the trees we know today, whose xylem expands in concentric rings and forms a solid trunk, the trunk of Cladoxylopsid was made up of strands of xylem connected by a network of softer tissues. Each of these strands was like a mini tree in and of itself. Each strand formed its own concentric rings that gradually increased the size of the trunk. However, this gradual expansion did not appear to be a gentle process.

As these strands increased in size, the trunk would grow larger and larger. In doing so, the tissues connecting the strands were pulled tighter and tighter. Eventually they would tear under the strain. They would gradually repair themselves over time but the effect on the trunk was quite remarkable. In effect, the base of the tree would literally collapse in on itself in a controlled manner. You could say that older Cladoxylopsids developed a bit of a muffin top at their base. 

A cross section of a Cladoxylopsid trunk showing the hollow center, individual xylem strands, and the network of connective tissues. [SOURCE]

A cross section of a Cladoxylopsid trunk showing the hollow center, individual xylem strands, and the network of connective tissues. [SOURCE]

Although this seems very detrimental, the overall structure of the tree would have been sturdy. The authors liken this to the design of the Eiffel tower. Indeed, a hollow cylinder is actually stronger than a solid one of the same dimensions. When looked at in the context of all other trees, this form of growth is truly unique. No other trees are constructed in such a manner.

The authors speculate that this form of growth may be why these trees eventually went extinct. It would have taken a lot of energy to grow in that manner. It is possible that, as more efficient forms of growth were evolving, the Cladoxylopsids may not have been able to compete. It is anyone's guess at this point but this certainly offers a window back into the early days of tree growth. It also shows that there has always been more than one way to grow a tree.

LEARN MORE ABOUT THESE TREES AND THE FORESTS THEY MADE IN EPISODE 253 OF THE IN DEFENSE OF PLANTS PODCAST.

Photo Credits: [1] [2]

Further Reading: [1]

The Ginkophytes Welcome a New Member

fossil3.JPG

Despite their dominance on the landscape today, the evolutionary history of the major seed-bearing plant lineages is shrouded in mysteries. We simply don't have a complete picture of their evolution and diversification through time. Still, numerous fossils are turning up that are shedding light on some of these mysteries, including some amazingly well-preserved plant fossils from Mongolia. One set of fossils in particular is hinting that the part of the seed-bearing family tree that includes the Ginkgo was much more diverse in both members and forms.

The fossils in question were unearthed from the Tevshiin Govi Formation of Mongolia and date back to the Early Cretaceous period, some 100 to 125 million years ago. Although these fossils do not represent a newly discovered plant, their preservation is remarkable, allowing a much more complete understanding of what they were along with where they might sit on the family tree. The fossils themselves are lignified and have preserved, in extreme detail, fine-scale anatomical details that reveal their overall structure and function.

The paleobotanical team responsible for their discovery and analysis determined that these were in fact seed-bearing cupules of a long-extinct Ginkgophyte, which they have named Umaltolepis. Previous discoveries have alluded to this as well, however, their exact morphology in relation to the entire organism has not always been clear. These new discoveries have revealed that the cupules (seed-bearing organs) themselves were borne on a stalk that sat at the tips of short shoots, very similar to the shoots of modern Ginkgo. They opened along four distinct slits, giving the structure an umbrella-like appearance.

The seeds themselves were likely wind dispersed, however, it is not entirely clear how fertilization would have been achieved. Based on similar analyses, it is very likely that this species was wind pollinated. Alongside the cupules were exquisitely preserved leaves. They were long, flat, and exhibit venation and resin ducts similar to that of the extant Ginkgo biloba. Taken together, these lines of evidence point to the fact that this group, currently represented by a single living species, was far more diverse during this time period. The differences in seed bearing structures and leaf morphology demonstrates that the Ginkgophytes were experimenting with a wide variety of life history characteristics.

Records from across Asia show that this species and its relatives were once wide spread throughout the continent and likely inhabited a variety of habitat types. Umaltolepis in particular was a denizen of swampy habitats and shared its habitat with other gymnosperms such as ancient members of the families Pinaceae, Cupressaceae, and other archaic conifers. Because these swampy sediments preserved so much detail about this ecosystem, the team suggests that woody plant diversity was surprisingly low, having turned up fossil evidence for only 10 distinct species so far. Other non-seed plants from Tevshiin Govi include a filmy fern and a tiny moss, both of which were likely epiphytes.

Whereas this new Umaltolepis species represents just one player in the big picture of seed-plant evolution, it nonetheless a major step in our understanding of plant evolution. And, at the end of the day, fossil finds are always exciting. They allow us a window back in time that not only amazes but also helps us understand how and why life changes as it does. I look forward to more fossil discoveries like this.

LISTEN TO EP 300 OF THE IN DEFENSE OF PLANTS PODCAST TO LEARN MORE ABOUT THIS DISCOVERY AND MORE!

*Thanks to Dr. Fabiany Herrera for his comments on this piece

Photo Credits: [1]

Further Reading: [1] [2]

Ferns Unchanged

Ferns are old. Arising during the late Devonian period, some 360 million years ago, ferns once dominated the land. These ancient ferns were a bit different than the ferns we know today. It wasn't until roughly 145 million years ago, during the late Cretaceous period, that many extant fern families started to appear. However, a recent fossil discovery shows that at least one familiar fern was hanging out with dinosaurs as far back as 180 million years ago!

A team of scientists in Sweden recently unearthed an exquisitely preserve fossil of a fern from some early Jurassic deposits. Usually the fossilization process does not preserve very fine details, especially not at the cellular level, but that is not the case for this fossil. Falling into volcanic hydrothermal brine, the fern quickly mineralized. The speed at which the tissues of the fern were replaced by minerals preserved details that paleontologists usually only dream about. Clearly visible in the fossilized stem are subcellular structures like nuclei and even chromosomes in various stages of cell division!

 

A) Section of the fossil rhizome. B-J) Exquisitely preserve cellular details [SOURCE]

A) Section of the fossil rhizome. B-J) Exquisitely preserve cellular details [SOURCE]

Using sophisticated microscopy techniques, the team was able to analyze the properties of the nuclei undergoing division. What they discovered is simply amazing. The number of chromosomes as well as other properties of the DNA matched a fern that is quite common in eastern North America and Asia today. This fossilized fern, as far as the team can tell, is a close relative of the cinnamon fern (Osmundastrum cinnamomeum), placing it in the royal fern family (Osmundaceae). Based on the fossil evidence, relatives of these ferns were not only around during the early Jurassic, they have remained virtually unchanged for 180 million years. Talk about living fossils!

Further Reading: [1] [2]

Tomatillos Just Got A Lot Older

Tomatillos and ground cherries just got a bit older. Okay, a lot older. Exquisitely preserved fossils from an ancient lake bed in Argentina are shining a very bright light on the genus Physalis and the family Solanaceae as a whole. Despite the importance of this plant family around the globe, little fossil evidence has ever been found. That is, until now. 

Dated at 52 million years old, these fossils paint a picture of a snapshot in the evolution of the genus Physalis. The fossils are remarkable, allowing for close inspection of minute details like vein structure. Because of the level of detail discernible, experts can say without a doubt that these fossils could be nothing else other than a species of Physalis

One of the most interesting aspects of these fossils is their age. These sediments were deposited during the early Eocene Epoch. The fact that representatives of Physalis were alive and well during this time is quite remarkable. Because fossil evidence for Solanaceae has been so scarce, experts have had to rely solely on molecular dating in order to elucidate the origin and divergence of this family. 

Original estimates placed the origin of Solanaceae at sometime around 30 million years before present. Physalis, being much more derived, was thought to have an even more recent emergence, some 9 million years ago. Boy, was that ever wrong. At 52 million years of age, we can now confidently say that Physalis is at least 43 million years older than previously thought. These findings also tell us that Solanaceae is even older still! If such a derived genus was thriving in Eocene Argentina 52 million years ago, basil members of the family must have gotten their start much earlier than we ever imagined. 

Aside from big picture taxonomical revelations, the fossils also give us a window into the ecology of these ancient Physalis. The most obvious is that inflated bladder which surrounds the berry within. Though it is quite characteristic of this group, little attention has been paid to its function. The fact that the sediments in which they were preserved are of aquatic origin suggests that the inflated calyces may have evolved for aquatic seed dispersal. Experiments have shown that these structures on modern day ground cherries and tomatillos do in fact float, keeping the berry inside high and dry. 

To think that all of this was brought to light from a handful of fossils. It just goes to show you the importance the paleontological discoveries can have. Just think of the countless amount of museum drawers and shelves that are chock full of interesting fossils waiting to be looked over. Who knows what they might tell us about our planet. 

Photo Credit: Ignacio Escapa, Museo Paleontológico Egidio Feruglio

Further Reading: [1]

Aquatic Angiosperm: A Cretaceous Origin?

Via Bernard Gomeza, Véronique Daviero-Gomeza, Clément Coiffardb, Carles Martín-Closasc, David L. Dilcherd, and O. Sanisidro [SOURCE]

Via Bernard Gomeza, Véronique Daviero-Gomeza, Clément Coiffardb, Carles Martín-Closasc, David L. Dilcherd, and O. Sanisidro [SOURCE]

It would seem that yet another piece of the evolutionary puzzle that are flowering plants has been found. I have discussed the paleontological debate centered around the angiosperm lineage in the past (http://bit.ly/1S6WLkf), and I don't think the recent news will put any of it to rest. However, I do think it serves to expand our limited view into the history of flowering plant evolution.

Meet Montsechia vidalii, an extinct species that offers tantalizing evidence that flowering plants were kicking around some 130–125 million years ago, during the early days of the Cretaceous. It is by no means showy and I myself would have a hard time distinguishing its reproductive structures as flowers yet that is indeed what they are thought to be. Detailed (and I mean detailed) analyses of over 1,000 fossilized specimens reveals that the seeds are enclosed in tissue, a true hallmark of the angiosperm lineage.

On top of this feature, the fossils also offer clues to the kind of habitat Montsechia would have been found in. As it turns out, this was an aquatic species. The flowers, instead of poking above the water, would have remained submerged. An opening at the top of each flower would have allowed pollen to float inside for fertilization. Another interesting feature of Montsechia is that it had no roots. Instead, it likely floated around in shallow water.

Via Bernard Gomeza, Véronique Daviero-Gomeza, Clément Coiffardb, Carles Martín-Closasc, David L. Dilcherd, and O. Sanisidro [SOURCE]

Via Bernard Gomeza, Véronique Daviero-Gomeza, Clément Coiffardb, Carles Martín-Closasc, David L. Dilcherd, and O. Sanisidro [SOURCE]

This is all very similar to another group of extant aquatic flowering plants in the genus Ceratophyllum (often called hornworts or coon's tail). Based on such morphological evidence, it has been agreed that these two groups represent early stem lineages of the angiosperm tree. Coupled with what we now know about the habitat of Archaefructus (http://bit.ly/1S6WLkf), it is becoming evident that the evolution of flowers may have happened in and around water. This in turn brings up many more questions regarding the selective pressures that led to flowers.

What is even more amazing is that these fossils are by no means recent discoveries. They were part of a collection that was excavated in Spain over 100 years ago. Discoveries like this happen all the time. Someone finds a interesting set of fossils that are then stored away on a dark shelf in the bowels of a museum only to be rediscovered decades or even centuries later.

All in all I think this discovery lends credence to the idea that flowering plants are a bit older than we like to think. Also, one should be wary of anyone claiming to have found "the first flower." The idea that there could be a fossil out there that depicts the first anything is flawed a leads to a lot of confusion. Instead, fossils like these represent snapshots in the continuum that is evolution. Each new discovery reveals a little bit more about the evolution of that lineage. We will never find the first flower but we will continue to refine our understanding of life on this planet.

Photo Credits: Bernard Gomeza, Véronique Daviero-Gomeza, Clément Coiffardb, Carles Martín-Closasc, David L. Dilcherd, and O. Sanisidro,

Further Reading:
http://www.pnas.org/content/112/35/10985.abstract

Cooksonia: A Step Into the Canopy

Photo by Steel Wool licensed under CC BY-NC-ND 2.0

Photo by Steel Wool licensed under CC BY-NC-ND 2.0

For plants, the journey onto land did not happen over night. It began some 485.4–443.4 million years ago during the Ordovician. The best evidence we have for this comes in the form of fossilized spores. These spores resemble those of modern day liverworts. Under high powered microscopes, one can easily see that they were indeed adapted for life on land. These early plants were a lot like the hornworts, liverworts, and mosses we see today in having no vascular tissues for transporting water, an adaptation that would not come along for another few million years. 

Without vascular tissues, plants like liverworts and mosses cannot transport water very far. They instead rely on osmosis and diffusion to get water and nutrients to where they need to be, which severely limits the size of these types of plants to only a few centimeters. This growth pattern carried on well into the Silurian. Until then, the greening of our planet happened in miniature. 

Photo by Sabrina Setaro licensed under CC BY 2.0

Photo by Sabrina Setaro licensed under CC BY 2.0

Around 415 million years ago, however, plants became vascularized. This changed everything. It set the stage for the botanical world we know and love today. Paleobotanists place the fossil remains of these newly evolved vascular plants in the genus Cooksonia. Based on what we would call a plant today, Cooksonia probably pushes the limits. However, in some species the branching structure is full of dark stripes, which have been interpreted as vascular tissues. It still wasn't a very tall plant with the tallest specimen standing only a few centimeters but it was a major step towards a much taller green world. 

Cooksonia did not have any leaves that we are aware of but some species certainly had stomata (another major innovation for water regulation in plants). Each branched tip ended in a sporangium or spore-bearing capsule. It has been suggested that Cooksonia may not represent an individual photosynthetic plant but rather a highly adapted sporophyte that may have relied on a gametophyte for photosynthesis. This hypothesis is supported by the diminutive size of many Cooksonia fossils. They simply do not have enough room within their tissues to support photosynthetic machinery. Because of this, some botanists believe that vascularization sprang from a dependent sporophyte that gradually became more and more independent from its gametophyte over time. Until an associated gametophyte fossil is found, we simply don't know. 

Photo Credits: Steel Wool (http://bit.ly/1AjLYh8) and Sabrina Setaro (http://bit.ly/16mdyxw)

Further Reading: [1] [2] [3]