The Future of New Zealand's Shrubby Tororaro Lies in Cultivation

Photo by Jon Sullivan licensed under CC BY-NC 2.0

Photo by Jon Sullivan licensed under CC BY-NC 2.0

I was watching a gardening show hosted by one of my favorite gardeners, Carol Klein, when she introduced viewers to a beautiful, divaricating shrub whose branching structure looked like a dense tracery of orange twigs. She referred to the shrub as a wiggy wig and remarked on its beauty and form before moving on to another wonderful plant. I was taken aback by the structure of the shrub and had to learn more. Certainly its form had to be the result of delicate pruning and selective breeding. Imagine my surprise when I found its growth habit was inherent to this wonderful and rare species.

The wiggy wig or shrubby tororaro is known to science as Muehlenbeckia astonii. It is a member of the buckwheat family (Polygonaceae) endemic to grey scrub habitats of eastern New Zealand. Though this species is widely cultivated for its unique appearance, the shrubby tororaro is not faring well in the wild. For reasons I will cover in a bit, this unique shrub is considered endangered. To understand some of these threats as well as what it will take to bring it back from the brink, we must first take a closer look at its ecology.

Photo by WJV&DB licensed under CC BY-SA 3.0

Photo by WJV&DB licensed under CC BY-SA 3.0

As mentioned, the shrubby tororaro is endemic to grey scrub habitats of eastern New Zealand. It is a long lived species, with individuals living upwards of 80 years inder the right conditions. Because its habitat is rather dry, the shrubby tororaro grows a deep taproot that allows it to access water deep within the soil. That is not to say that it doesn’t have to worry about drought. Indeed, the shrubby tororaro also has a deciduous habit, dropping most if not all of its tiny, heart-shaped leaves when conditions become too dry. During the wetter winter months, its divaricating twigs become bathed in tiny, cream colored flowers that are very reminiscent of the buckwheat family. From a reproductive standpoint, its flowers are quite interesting.

The shrubby tororaro is gynodioecious, which means individual shrubs produce either only female flowers or what is referred to as ‘inconstant male flowers.’ Essentially what this means is that certain individuals will produce some perfect flowers that have functional male and female parts. This reproductive strategy is thought to increase the chances of cross pollination among unrelated individuals when populations are large enough. Following successful pollination, the remaining tepals begin to swell and surround the hard nut at the center, forming a lovely translucent fruit-like structure that entices dispersal by birds. As interesting and effective as this reproductive strategy can be in healthy populations, the shrubby tororaro’s gynodioecious habit starts to break down as its numbers decrease in the wild.

Photo by Jon Sullivan licensed under CC BY-NC 2.0

Photo by Jon Sullivan licensed under CC BY-NC 2.0

As New Zealand was colonized, lowland habitats like the grey scrub were among the first to be converted to agriculture and that trend has not stopped. What grey scrub habitat remains today is highly degraded by intense grazing and invasive species. Habitat loss has been disastrous for the shrubby tororaro and its neighbors. Though this shrub was likely never common, today only a few widely scattered populations remain and most of these are located on private property, which make regular monitoring and protection difficult.

Observations made within remnant populations indicate that very little reproduction occurs anymore. Either populations are comprised of entirely female individuals or the few inconstant males that are produced are too widely spaced for pollination to occur. Even when a crop of viable seeds are produced, seedlings rarely find the proper conditions needed to germinate and grow. Invasive grasses and other plants shade them out and invasive insects and rodents consume the few that manage to make it to the seedling stage. Without intervention, this species will likely go extinct in the wild in the coming decades.

Photo by John Pons licensed under CC BY-SA 4.0

Photo by John Pons licensed under CC BY-SA 4.0

Luckily, conservation measures are well underway and they involve cultivation by scientists and gardeners alike. There is a reason this shrub has become very popular among gardeners - it is relatively easy to grow and propagate. From hardwood cuttings taken in winter, the shrubby tororaro will readily root and grow into a clone of the parent plant. Not only has this aided in spreading the plant among gardeners, it has also allowed conservationists to preserve and bolster much of the genetic diversity within remaining wild populations. By cloning, growing, and distributing individuals among various living collections, conservationists have at least safeguarded many of the remaining individuals.

Moreover, cultivation on this scale means dwindling wild populations can be supplemented with unrelated individuals that produce both kinds of flowers. By increasing the numbers within each population, conservationists are also decreasing the distances between female and inconstant male individuals, which means more chances for pollination and seed production. Though by no means out of the proverbial woods yet, the shrubby tororaro’s future in the wild is looking a bit brighter.

This is good news for biodiversity of the region as well. After all, the shrubby tororaro does not exist in a vacuum. Numerous other organisms rely on this shrub for their survival. Birds feed heavily on its fruits and disperse its seeds while the larvae of at least a handful of moths feed on its foliage. In fact, the larvae of a few moths utilize the shrubby tororaro as their sole food source. Without it, these moths would perish as well. Of course, those larvae also serve as food for birds and lizards. Needless to say, saving the shrubby tororaro benefits far more than just the plant itself. Certainly more work is needed to restore shrubby tororaro habitat but in the meantime, cultivation is ensuring this species will persist into the future.

Further Reading: [1] [2] [3]

My New Book Has Arrived!

2033486357.jpg

The time has finally come! In Defense of Plants: An Exploration into the Wonder of Plants is now in stores. I thank everyone who pre-ordered a copy of the book. They should be on their way! I still can’t believe this is a reality. I always knew I wanted to write a book and I am eternally grateful to Mango Publishing for giving me this opportunity.

In Defense of Plants is a celebration of plants for the sake of plants. There is no denying that plants are extremely useful to humanity in many ways, but that isn’t why this exist. Plants are living, breathing, self-replicating organisms that are fighting for survival just like the rest of life on Earth. And, thanks to their sessile habit, they are doing so in remarkable and sometimes alien ways.

One of the best illustrations of this can be found in Chapter 3 of my new book: “The Wild World of Plant Sex.” Whereas most of us will have a passing familiarity with the concept of pollination, we have only really scratched the surface of the myriad ways plants have figured out how to have sex. Some plants go the familiar rout, offering pollen and nectar to floral visitors in hopes that they will exchange their gametes with another flower of the same species.

Others have evolved trickier means to get the job done. Some fool their pollinators into thinking they are about to get a free meal using parts of their anatomy such as fake anthers or by offering nectar spurs that don’t actually produce nectar. Some plants even pretend to smell like dying bees to lure in scavenging flies. Still others bypass food stimuli altogether and instead smell like receptive female insects in hopes that sex-crazed males won’t know the difference.

Pollination isn’t just for flowering plants either. In In Defense of Plants I also discuss some of the novel ways that mosses have converged on a pollination-like strategy by co-opting tiny invertebrates that thrive in the humid microclimates produced by the dense, leafy stems of moss colonies.

This is just a taste of what is printed on the pages of my new book. I really hope you will consider picking up a copy. To those that already have, I hope you enjoy the read when it arrives! Thank you again for support In Defense of Plants. You are helping keep these operations up and running, allowing me to continue to bring quality, scientifically accurate botanical content to the world. Thank you from the bottom of my heart.

Click here if you would like to order a copy!

You can also purchase a copy directly from the publisher

Dwarf Sumac: North America's Rarest Rhus

James Henderson, Golden Delight Honey, Bugwood.org.

James Henderson, Golden Delight Honey, Bugwood.org.

In honor of my conversation with Anacardiaceae specialist, Dr. Susan Pell, I wanted to dedicate some time to looking at a member of this family that is in desperate need of more attention. I would like you to meet the dwarf sumac (Rhus michauxii). Found only in a few scattered locations throughout the Coastal Plain and Piedmont regions of southeastern North America, this small tree is growing increasingly rare.

Dwarf sumac is a small species, with most individuals maxing out around 1 - 3 feet (30.5 – 91 cm) in height. It produces compound fuzzy leaves with wonderfully serrated leaflets. It flowers throughout early and mid-summer, with individuals producing an upright inflorescence that is characteristic of what one might expect from the genus Rhus. Dwarf sumac is dioecious, meaning individual plants produce either male or female flowers. Also, like many of its cousins, dwarf sumac is highly clonal, sending out runners in all directions that grow into clones of the original. The end result of this habit is large populations comprised of a single genetic individual producing only one type of flower.

Current range of dwarf sumac (Rhus michauxii). Green indicates native presence in state, Yellow indicates present in county but rare, and Orange indicates historical occurrence that has since been extirpated. [SOURCE]

Current range of dwarf sumac (Rhus michauxii). Green indicates native presence in state, Yellow indicates present in county but rare, and Orange indicates historical occurrence that has since been extirpated. [SOURCE]

Research indicates that the pygmy sumac was likely never wide spread or common throughout its range. Its dependence on specific soil conditions (namely sandy or rocky, basic soils) and just the right amount of disturbance mean it is pretty picky as to where it can thrive. However, humans have pushed this species far beyond natural tolerances. A combination of agriculture, development, and fire sequestration have all but eliminated most of its historical occurrences.

Today, the remaining dwarf sumac populations are few and far between. Its habit of clonal spread complicates matters even more because remaining populations are largely comprised of clonal offshoots of single individuals that are either male or female, making sexual reproduction almost non-existent in most cases. Also, aside from outright destruction, a lack of fire has also been disastrous for the species. Dwarf sumac requires fairly open habitat to thrive and without regular fires, it is readily out-competed by surrounding vegetation.

A female infructescence. Photo by Alan Cressler.

A female infructescence. Photo by Alan Cressler

Luckily, dwarf sumac has gotten enough attention to earn it protected status as a federally listed endangered species. However, this doesn’t mean all is well in dwarf sumac land. Lack of funding and overall interest in this species means monitoring of existing populations is infrequent and often done on a volunteer basis. At least one study pointed out that some of the few remaining populations have only been monitored once, which means it is anyone’s guess as to their current status or whether they still exist at all. Some studies also indicate that dwarf sumac is capable of hybridizing with related species such as whinged sumac (Rhus copallinum).

Another complicating factor is that some populations occur in some surprisingly rundown places that can make conservation difficult. Because dwarf sumac relies on disturbance to keep competing vegetation at bay, some populations now exist along highway rights-of way, roadsides, and along the edges of artificially maintained clearings. While this is good news for current population numbers, ensuring that these populations are looked after and maintained is a difficult task when interests outside of conservation are involved.

Some of the best work being done to protect this species involves propagation and restoration. Though still limited in its scope and success, out-planting into new location in addition to augmenting existing populations offers hope of at least slowing dwarf sumac decline in the wild. Special attention has been given to planting genetically distinct male and female plants into existing clonal populations in hopes of increasing pollination and seed set. Though it is too early to count these few attempts as true successes, they do offer a glimmer of hope. Other conservation attempts involve protecting what little habitat remains for this species and encouraging better land management via prescribed burns and invasive species removal.

The future for dwarf sumac remains uncertain, but that doesn’t mean all hope is lost. With more attention and research, this species just may be saved from total destruction. The plight of species like the dwarf sumac serve as an important reminder of why both habitat conservation and restoration are so important for slowing biodiversity loss.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2] [3]James Henderson, Golden Delight Honey, Bugwood.org.

Encounters With a Rare White-Topped Carnivore

DSCN2855.jpg

I am not a list maker. Never have been and never will be. That being said, there are always going to be certain plants that I feel I need to see in the wild before I die. The white-topped pitcher plant (Sarracenia leucophylla) was one such plant.

I will never forget the first time I laid eyes on one of these plants. It was at a carnivorous plant club meeting in which the theme had been “show and tell.” Local growers were proudly showcasing select plants from their collections and it was a great introduction to many groups which, at the time, I was unfamiliar with. Such was the case for the taller pitcher plants in the genus Sarracenia. Up until that point, I had only ever encountered the squat purple pitcher plant (S. purpurea).

I rounded the corner to a row of display tables and was greeted with a line of stunning botanical pitfall traps. Nestled in among the greens, reds, and yellows was a single pot full of tremendously white, green, and red pitcher plants. I picked my jaw up off the floor and inquired. This was the first time I had seen Sarracenia leucophylla. At that point I knew I had to see such a beauty in the wild.

More like white and red top…

More like white and red top…

It would be nearly a decade before that dream came true. On my recent trip to the Florida panhandle, I learned that there may be a chance to see this species in situ. Needless to say, this plant nerd was feeling pretty ecstatic. Between survey sites, we pulled down a long road and parked our vehicle. I could tell that there was a large clearing just beyond the ditch, on the other side of the trees.

The clearing turned out to be an old logging site. Apparently the site was not damaged too severely during the process as the plant diversity was pretty impressive. We put on our boots and slogged our way down an old two track nearly knee deep in dark, tanic water. All around us we could see amazing species of Sabatia, Lycopodiella, Drosera, and so much more. We didn’t walk far before something white caught my eye.

There to the left of me was a small patch of S. leucophylla. I had a hard time keeping it together. I wanted to jump up and down, run around, and let off all of the excited energy that had built up that morning. I decided to reign it in, however, as I had to be extra careful not to trample any of the other incredible plants growing near by. It is always sad to see the complete disregard even seasoned botanists have for plants that are unlucky enough to be growing next door to a species deemed “more exciting,” but I digress.

Sarracenia leucophylla flower. Photo by Noah Elhardt licensed by GNU Free Documentation License [SOURCE]

Sarracenia leucophylla flower. Photo by Noah Elhardt licensed by GNU Free Documentation License [SOURCE]

This was truly a moment I needed to savor. I took a few pictures and then put my camera away to simply enjoyed being in the presence of such an evolutionary marvel. If you know how pitcher plants work then you will be familiar with S. leucophylla. Its brightly colored pitchers are pitfall traps. Insects lured in by the bright colors, sweet smell, and tasty extrafloral nectar eventually lose their footing and fall down into the mouth of the pitcher. Once they have passed the rim, escape is unlikely. Downward pointing hairs and slippery walls ensure that few, if any, insects can crawl back out.

What makes this species so precious (other than its amazing appearance) is just how rare it has become. Sarracenia leucophylla is a poster child for the impact humans are having on this entire ecosystem. It can only be found in a few scattered locations along the Gulf Coast of North America. The main threat to this species is, of course, loss of habitat.

A large conservation population growing ex situ at the Atlanta Botanical Garden.

A large conservation population growing ex situ at the Atlanta Botanical Garden.

Southeastern North America has seen an explosion in its human population over the last few decades and that has come at great cost to wild spaces. Destruction from human development, agriculture, and timber production have seen much of its wetland habitats disappear. What is left has been severely degraded by a loss of fire. Fires act as a sort of reset button on the vegetation dynamics of fire-prone habitats by clearing the area of vegetation. Without fires, species like S. leucophylla are quickly out-competed by more aggressive plants, especially woody shrubs like titi (Cyrilla racemiflora).

Another major threat to this species is poaching, though the main reasons may surprise you. Though S. leucophylla is a highly sought-after species by carnivorous plant growers, its ease of propagation means seed grown plants are usually readily available. That is not to say poaching for the plant trade doesn’t happen. It does and the locations of wild populations are best kept secret.

Sarracenia leucophylla habitat. Photo by Brad Adler licensed by CC BY-SA 2.5 [SOURCE]

Sarracenia leucophylla habitat. Photo by Brad Adler licensed by CC BY-SA 2.5 [SOURCE]

The main issue with poaching involves the cut flower trade. Florists looking to add something exotic to their floral displays have taken to using the brightly colored pitchers of various Sarracenia species. One or two pitchers from a population probably doesn’t hurt the plants very much but reports of entire populations having their pitchers removed are not uncommon to hear about. It is important to realize that not only do the pitchers provide these plants with much-needed nutrients, they are also the main photosynthetic organs. Without them, plants will starve and die.

I think at this point my reasons for excitement are pretty obvious. Wandering around we found a handful more plants and a few even had ripening seed pods. By far the coolest part of the encounter came when I noticed a couple damaged pitchers. I bent down and noticed that they had holes chewed out of the pitcher walls and all were positioned about half way up the pitcher.

I peered down into one of these damaged pitchers and was greeted by two tiny moths. Each moth was yellow with a black head and thick black bands on each wing. A quick internet search revealed that these were very special moths indeed. What we had found was a species of moth called the pitcher plant mining moth (Exyra semicrocea).

An adult pitcher plant mining moth (Exyra semicrocea) sitting within a pitcher!

An adult pitcher plant mining moth (Exyra semicrocea) sitting within a pitcher!

Amazingly, the lives of these moths are completely tied to the lives of the pitcher plants. Their larvae feed on nothing else. As if seeing this rare plant wasn’t incredible enough, I was witnessing such a wonderfully specific symbiotic relationship right before my very eyes.

Fortunately, the plight of S. leucophylla has not gone unnoticed by conservationists. Lots of attention is being paid to protecting remaining populations, collecting seeds, and reintroducing plants to part of their former range. For instance, it has been estimated that efforts to protect this species by the Atlanta Botanical Garden have safeguarded most of the genetic diversity that remains for S. leucophylla. Outside of direct conservation efforts, many agencies both public and private are bringing fire back into the ecology of these systems. Fires benefit so much more than S. leucophylla. They are restoring the integrity and resiliency of these biodiverse wetland habitats.

LEARN MORE ABOUT WHAT PLACES LIKE THE ATLANTA BOTANICAL GARDEN ARE DOING TO PROTECT IMPORTANT PLANT HABITATS THROUGHOUT THE SOUTHEAST AND MORE.

Further Reading: [1] [2] [3] [4] [5]

Saving One of North America's Rarest Shrubs

Photo by Stan Shebs licensed under CC BY-SA 3.0

Photo by Stan Shebs licensed under CC BY-SA 3.0

The chance to save a species from certain extinction cannot be wasted. When the opportunity presents itself, I believe it is our duty to do so. Back in 2010, such an opportunity presented itself to the state of California and what follows is a heroic demonstration of the lengths dedicated individuals will go to protect biodiversity. Thought to be extinct for 60 years, the Franciscan manzanita (Arctostaphylos franciscana) has been given a second chance at life on this planet.

California is known the world over for its staggering biodiversity. Thanks to a multitude of factors that include wide variations in soil and climate types, California boasts an amazing variety of plant life. Some of the most Californian of these plants belong to a group of shrubs and trees collectively referred to as 'manzanitas.' These plants are members of the genus Arctostaphylos, which hails from the family Ericaceae, and sport wonderful red bark, small green leaves, and lovely bell-shaped flowers. Of the approximately 105 species, subspecies, and varieties of manzanita known to science, 95 of them can be found growing in California.

It has been suggested that manzanitas as a whole are a relatively recent taxon, having arisen sometime during the Middle Miocene. This fact complicates their taxonomy a bit because such a rapid radiation has led manzanita authorities to recognize a multitude of subspecies and varieties. In California, there are also many endemic species that owe their existence in part to the state's complicated geologic history. Some of these manzanitas are exceedingly rare, having only been found growing in one or a few locations. Sadly, untold species were probably lost as California was settled and human development cleared the land. 

Such was the case for the Franciscan manzanita. Its discovery dates back to the late 1800's. California botanist and manzanita expert, Alice Eastwood, originally collected this plant on serpentine soils around the San Francisco Bay Area. In the years following, the growing human population began putting lots of pressure on the surrounding landscape.

Photo by Daderot (public domain)

Photo by Daderot (public domain)

Botanists like Eastwood recognized this and went to work doing what they could to save specimens from the onslaught of bulldozers. Luckily, the Franciscan manzanita was one such species. A few individuals were dug up, rooted, and their progeny were distributed to various botanical gardens. By the 1940's, the last known wild population of Franciscan manzanita were torn up and replaced by the unending tide of human expansion into the Bay Area.

It was apparent that the Franciscan manzanita was gone for good. Nothing was left of its original populations outside of botanical gardens. It was officially declared extinct in the wild. Decades went by without much thought for this plant outside of a few botanical circles. All of that changed in 2009.

It was in 2009 when a project began to replace a stretch of roadway called Doyle Drive. It was a massive project and a lot of effort was invested to remove the resident vegetation from the site before work could start in earnest. Native vegetation was salvaged to be used in restoration projects but most of the clearing involved the removal of aggressive roadside trees. A chipper was brought in to turn the trees into wood chips. Thanks to a bit of serendipity, a single area of vegetation bounded on all sides by busy highway was spared from wood chip piles. Apparently the only reason for this was because a patrol car had been parked there during the chipping operation.

Cleared of tall, weedy trees, this small island of vegetation had become visible by road for the first time in decades. That fall, a botanist by the name of Daniel Gluesenkamp was driving by the construction site when he noticed an odd looking shrub growing there. Luckily, he knew enough about manzanitas to know something was different about this shrub. Returning to the site with fellow botanists, Gluesenkamp and others confirmed that this odd shrubby manzanita was in fact the sole surviving wild Franciscan manzanita. Needless to say, this caused a bit of a stir among conservationists.

median arc.JPG

The shrub had obviously been growing in that little island of serpentine soils for quite some time. The surrounding vegetation had effectively concealed its presence from the hustle and bustle of commuters that crisscross this section of on and off ramps every day. Oddly enough, this single plant likely owes its entire existence to the disturbance that created the highway in the first place. Manzanitas lay down a persistent seed bank year after year and those seeds can remain dormant until disturbance, usually fire but in this case road construction, awakens them from their slumber. It is likely that road crews had originally disturbed the serpentine soils just enough that this single Franciscan manzanita was able to germinate and survive.

The rediscovery of the last wild Franciscan manzanita was bitter sweet. On the one hand, a species thought extinct for 60 years had been rediscovered. On the other hand, this single individual was extremely stressed by years of noxious car exhaust and now, the sudden influx of sunlight due to the removal of the trees that once sheltered it. What's more, this small island of vegetation was doomed to destruction due to current highway construction. It quickly became apparent that if this plant had any chance of survival, something drastic had to be done.

Many possible rescue scenarios were considered, from cloning the plant to moving bits of it into botanical gardens. In the end, the most heroic option was decided on - this single Franciscan manzanita was going to be relocated to a managed natural area with a similar soil composition and microclimate.

Moving an established shrub is not easy, especially when that particular individual is already stressed to the max. As such, numerous safeguards were enacted to preserve the genetic legacy of this remaining wild individual just in case it did not survive the ordeal. Stem cuttings were taken so that they could be rooted and cloned in a lab. Rooted branches were cut and taken to greenhouses to be grown up to self-sustaining individuals. Numerous seeds were collected from the surprising amount of ripe fruits present on the shrub that year. Finally, soil containing years of this Franciscan manzanita's seedbank as well as the microbial community associated with the roots, were collected and stored to help in future reintroduction efforts.

A fran rescue.JPG

Finally, the day came when the plant was to be dug up and moved. Trenches were dug around the root mass and a dozen metal pipes were driven into the soil 2 feet below the plant so that the shrub could safely be separated from the soil in which it had been growing all its life. These pipes were then bolted to I-beams and a crane was used to hoist the manzanita up and out of the precarious spot that nurtured it in secret for all those years.

Upon arriving at its new home, experts left nothing to chance. The shrub was monitored daily for the first ten days of its arrival followed by continued weekly visits after that. As anyone that gardens knows, new plantings must be babied a bit before they become established.  For over a year, this single shrub was sheltered from direct sun, pruned of any dead and sickly branches, and carefully weeded to minimize competition. Amazingly, thanks to the coordinated effort of conservationists, the state of California, and road crews, this single individual lives on in the wild.

Of course, one single individual is not enough to save this species from extinction. At current, cuttings, and seeds provide a great starting place for further reintroduction efforts. Similarly, and most importantly, a bit of foresight on the part of a handful of dedicated botanists nearly a century ago means that the presence of several unique genetic lines of this species living in botanical gardens means that at least some genetic variability can be introduced into the restoration efforts of the Franciscan manzanita.

In an ideal world, conservation would never have to start with a single remaining individual. As we all know, however, this is not an ideal world. Still, this story provides us with inspiration and a sense of hope that if we can work together, amazing things can be done to preserve and restore at least some of what has been lost. The Franciscan manzanita is but one species that desperately needs our help an attention. It is a poignant reminder to never give up and to keep working hard on protecting and restoring biodiversity.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

 

Botanical Gardens & Plant Conservation

BG1.JPG

Botanical gardens are among my favorite places in the world. I find them both relaxing and stimulating, offering something for all of our senses. Botanical gardens are valuable for more than just their beauty. They serve a deeper purpose than simply showcasing endless poinsettia varieties or yet another collection of Dale Chihuly pieces (a phenomenon I can't quite wrap my head around). Botanical gardens are vitally important centers of ex situ plant conservation efforts.

Ex situ conservation literally means "off site conservation," when plants are grown within the confines of a botanical garden, often far away from their native habitats. This is an important process in and of its own because housing plants in different locations safeguards them from complete annihilation. Simply put, don't put all your endangered eggs in one basket.

IMG_2395.jpg

I don't think botanical gardens get enough credit for their conservation efforts. Sadly, such endeavors are often overshadowed. That's not to say we don't have a good handle on what is going on. In fact, a study published in August of 2017 looked at the status of ex situ plant conservation efforts around the globe.

The paper outlines a conservative estimate of the diversity of plants found in botanical gardens and highlights areas in desperate need of improvement. Utilizing a dataset compiled by Botanic Gardens Conservation International (BGCI), the team found that the world's botanical gardens contain somewhere around 30% or 105,209 of the 350,699 plant species currently known to science. In total, they estimate humanities various living collections contain representatives from roughly 90% of the known plant families. That is pretty impressive considering the scale of plant diversity on our planet.

Proportions of the world's plants represented in botanical garden collections (Source)

Proportions of the world's plants represented in botanical garden collections (Source)

Their research didn't stop there either. The team dove deeper into these numbers and found that there are some serious discrepancies in these estimates. For instance (and to my surprise), botanical gardens house more temperate plant species than they do tropical plant species. They estimated that nearly 60% of the world's temperate plant species are being grown in botanical gardens around the world but only 25% of tropical species. This is despite the fact that most of the world's plants are, in fact, tropical.

Similarly, only 5% of botanical garden collections are dedicated to non-vascular plants like mosses and liverworts. This is a shame not only because these plants are quite interesting and beautiful, but they also are descendants of the first plant lineages to make their way onto land. They are vital to understanding plant evolution as well as plant diversity.

As I mentioned above, ex situ conservation efforts are critical in fighting plant extinctions across the globe. With 1/5 of the world's plants at risk of extinction, the authors of the paper were particularly interested in how botanical gardens were doing in this regard. They found that although various institutions are growing nearly half of all the known threatened plant species on this planet, only 10% of their collection space is devoted to these species. It goes without saying that this number needs to improve if we are to stave off further extinctions.

Taken together, this study paints an interesting and informative picture of botanical garden collections on a global scale. They are doing amazing work to protect and showcase plant diversity. However, there is always a need for improvement. More space and effort needs to be made in ex situ plant conservation efforts. More plants, especially little known tropical species, need to be brought into cultivation. More space must be devoted to propagating threatened and endangered species. Finally, more attention must be given to natural plant diversity rather than gaudy cultivars. If you love botanical gardens as much as I do, please support them. As the authors so eloquently summarize, "Without deep sustained public support, the plant conservation movement will struggle."

Further Reading: [1]

 

 

An Orchid of Hybrid Origin

Hybridization is an often overlooked mechanism for evolution. We are taught in high school that hybrids such as mules and ligers are one-off's, evolutionary dead ends doomed to a life of sterility. Certainly this holds true in many instances. Species separated by great lengths of time and space are simply incompatible. However, there are instances throughout the various kingdoms of life in which hybrids do turn out viable.

If they are different enough from either parent, their creation may lead to speciation down the line. Such events have been found in ferns, butterflies, and even birds. One particular example of a hybrid species only recently came to my attention. While touring the Atlanta Botanical Garden I came across a fenced off bed of plants. Inside the fence were orchids standing about knee height. At the top of each plant was a brilliant spike of orange flowers. "Ah," I exclaimed, "the orange fringed orchid!" The reply I got was unexpected - "Sort of."

What I had stumbled across was neither the orange fringed orchid (Platanthera ciliaris) nor the crested yellow orchid (Platanthera cristata). What I was looking at were a small handful of the globally imperiled Chapman's fringed orchid (Platanthera chapmanii). Though there is some debate about the origins of this species, many believe it to be a naturally occurring hybrid of the other two. In many ways it is a perfect intermediate. Despite its possible hybrid origins, it nonetheless produces viable seed. What's more, it readily hybridizes with both parental species as well as a handful of other Platanthera with which it sometimes shares habitat.

Despite occasionally being found along wet roadside ditches, this species is rapidly losing ground. The wet meadows and pine savannas it prefers are all too quickly being leveled for housing and other forms of development. Although it once ranged from southeast Texas to northern Florida, and southeast Georgia, it has since been reduced to less than 1000 individuals scattered among these three states.

There is a light at the end of the tunnel though. Many efforts are being put forth to protect and conserve this lovely orchid. Greenhouse propagation in places like the Atlanta Botanical Garden are helping supplement wild populations while at the same time, maintaining genetic diversity. New populations have been located in Georgia and are now under protection. Though not out of the woods yet, this species serves as a reminder that a little bit of effort can go a long way.

Further Reading: [1] [2] [3] [4]