Maples, Epiphytes, and a Canopy Full of Goodies

IMG_0090.jpg

The forests of the Pacific Northwest are known for the grandeur. This region is home to one of the greatest temperate rainforests in the world. A hiker is both dwarfed and enveloped by greenery as soon as they hit the trail. One aspect of these forests that is readily apparent are the carpets of epiphytes that drape limbs and branches all the way up into the canopy. Their arboreal lifestyle is made possible by a combination of mild winters and plenty of precipitation. 

We are frequently taught that the relationship between trees and their epiphytes are commensal - the epiphytes get a place to live and the trees are no worse for wear. However, there are a handful of trees native to the Pacific Northwest that are changing the way we think about the relationship between these organisms in temperate rainforests.

Though conifers dominate the Pacific Northwest landscape, plenty of broad leaved tree species abound. One of the most easily recognizable is the bigleaf maple (Acer macrophyllum). Both its common and scientific names hint at its most distinguishing feature, its large leaves. Another striking feature of this tree are its epiphyte communities. Indeed, along with the vine maple (A. circinatum), these two tree species carry the greatest epiphyte to shoot biomass ratio in the entire forest. Numerous species of moss, liverworts, lichens, and ferns have been found growing on the bark and branches of these two species.

Epiphyte loads are pretty intense. One study found that the average epiphyte crop of a bigleaf maple weighs around 78 lbs. (35.5 Kg). That is a lot of biomass living in the canopy! The trees seem just fine despite all of that extra weight. In fact, the relationship between bigleaf and vine maples and their epiphyte communities run far deeper than commensalism. Evidence accumulated over the last few decades has revealed that these maples are benefiting greatly from their epiphytic adornments.

Rainforests, both tropical and temperate, generally grow on poor soils. Lots of rain and plenty of biodiversity means that soils are quickly leached of valuable nutrients. Any boost a plant can get from its environment will have serious benefits for growth and survival. This is where the epiphytes come in. The richly textured mix of epiphytic plants greatly increase the surface area of any branch they live on. And all of that added surface area equates to more nooks and crannies for water and dust to get caught and accumulate.

Photo by SuperFantastic licensed under CC BY 2.0

Photo by SuperFantastic licensed under CC BY 2.0

When researchers investigated just how much of a nutrient load gets incorporated into these epiphyte communities, the results painted quite an impressive picture. On a single bigleaf maple, epiphyte leaf biomass was 4 times that of the host tree despite comprising less than 2% of the tree's above ground weight. All of that biomass equates to a massive canopy nutrient pool rich in nitrogen, phosphorus, potassium, calcium, magnesium, and sodium. Much of these nutrients arrive in the form of dust-sized soil particles blowing around on the breeze. What's more, epiphytes act like sponges, soaking up and holding onto precious water well into the dry summer months.

Now its reasonable to think that nutrients and water tied up in epiphyte biomass would be unavailable to trees. Indeed, for many species, epiphytes may slow the rate at which nutrients fall to and enter into the soil. However, trees like bigleaf and vine maples appear to be tapping into these nutrient and water-rich epiphyte mats.

A subcanopy of vine maple (Acer circinatum) draped in epiphytes.

A subcanopy of vine maple (Acer circinatum) draped in epiphytes.

Both bigleaf and vine maples (as well as a handful of other tree species) are capable of producing canopy roots. Wherever the epiphyte load is thick enough, bundles of cells just under the bark awaken and begin growing roots. This is a common phenomenon in the tropics, however, the canopy roots of these temperate trees differ in that they are indistinguishable in form and function from subterranean roots.

Canopy roots significantly increase the amount of foraging an individual tree can do for precious water and nutrients. Additionally, it has been found that canopy roots of the bigleaf maple even go as far as to partner with mycorrhizal fungi, thus unlocking even more potential for nutrient and water gain. In the absence of soil nutrient and water pools, a small handful of trees in the Pacific Northwest have unlocked a massive pool of nutrients located above us in the canopy. Amazingly, it has been estimated that mature bigleaf and vine maples with well developed epiphyte communities may actually gain a substantial fraction of their water and nutrient needs via their canopy roots.

 

Photo Credits: [2]

Further Reading: [1] [2] [3] [4] [5]

 

The Plight of the African Violets

Photo by RobertoMM licensed under CC BY-SA 3.0

Photo by RobertoMM licensed under CC BY-SA 3.0

For many of us, African violets (Saintpaulia spp.) are some of the first houseplants we learned how to grow. They are not true violets (Violaceae), of course, but rather members of the family Gesneriaceae. Nonetheless, their compact rosettes of fuzzy leaves coupled with regular sprays of colorful flowers has made them a multi-million dollar staple of the horticultural industry. Unfortunately their numbers in captivity overshadow a bleak future for this genus in the wild. Many African violets are teetering on the brink of extinction.

The genus Saintpaulia is endemic to a small portion of east Africa, with a majority of species being found growing at various elevations throughout the Eastern Arc Mountains of Kenya and Tanzania. Most of the plants we grow at home are clones and hybrids of two species, S. ionantha and S. confusa. Collected in 1892, these two species were originally thought to be the same species, S. ionantha, until a prominent horticulturist noted that there are distinct differences in the seed capsules each produced. Since the 1890's, more species have been discovered.

Saintpaulia goetzeana

Saintpaulia goetzeana

Exactly how many species comprise this genus is still up for some debate. Numbers range from as many as 20 to as few as 6. Much of the early work on describing various Saintpaulia species involved detailed descriptions of the density and direction of hairs on the leaves. More recent genetic work considers some of these early delineations to be tenuous at best, however, even these modern techniques have resolved surprisingly little when it comes to a species concept within this group.

Saintpaulia sp. in situ. Photo by TanzaniaPlantCollaboration licensed under CC BY-NC-SA 2.0

Saintpaulia sp. in situ. Photo by TanzaniaPlantCollaboration licensed under CC BY-NC-SA 2.0

Though it can be risky to try and make generalizations about an entire genus, there are some commonalities when it comes to the habitats these plants prefer. Saintpaulia grow at a variety of elevations but most can be found growing on rocky outcrops. Most of them prefer growing in the shaded forest understory, hence they do so well in our (often) poorly lit homes. Their affinity for growing on rocks means that many species are most at home growing on rocks and cliffs near streams and waterfalls. The distribution of most Saintpaulia species is quite limited, with most only known from a small region of forest or even a single mountain. Its their limited geographic distribution that is cause for concern.

Saintpaulia ionantha subsp. grotei in situ.

Saintpaulia ionantha subsp. grotei in situ.

Regardless of how many species there are, one fact is certain - many Saintpaulia risk extinction if nothing is done to save them. Again, populations of Saintpaulia species are often extremely isolated. Though more recent surveys have revealed that a handful of lowland species are more widespread than previously thought, mid to highland species are nonetheless quite restricted in their distribution. Habitat loss is the #1 threat facing Saintpaulia. Logging, both legal and illegal, and farming are causing the diverse tropical forests of eastern Africa to shrink more and more each year. As these forests disappear, so do Saintpaulia and all of the other organisms that call them home.

There is hope to be had though. The governments of Kenya and Tanzania have recognized that too much is being lost as their forests disappear. Stronger regulations on logging and farming have been put into place, however, enforcement continues to be an issue. Luckily for some Saintpaulia species, the type localities from which they were described are now located within protected areas. Protection coupled with inaccessibility may be exactly what some of these species need to survive. Also, thanks to the ease in which Saintpaulia are grown, ex situ conservation is proving to be a viable and valuable option for conserving at least some of the genetic legacy of this genus.

Saintpaulia intermedia [source]

Saintpaulia intermedia [source]

It is so ironic to me that these plants can be so common in our homes and offices and yet so rare in the wild. Despite their popularity, few recognize the plight of this genus. My hope is that, in reading this, many of you will think about what you can do to protect the legacy of plants like these and so many others. Our planet and the species that call it home are doomed without habitat in which to live and reproduce. This is why land conservation is an absolute must. Consider donating to a land conservation organization today. Here are two worth your consideration:

The Nature Conservancy

The Rainforest Trust

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4] [5]

The Carnivorous Dewy Pine

Photo by David Eickhoff licensed under CC BY-NC-SA 2.0

Photo by David Eickhoff licensed under CC BY-NC-SA 2.0

The dewy pine is definitely not a pine, however, it is quite dewy. Known scientifically as Drosophyllum lusitanicum, this carnivore is odd in more ways than one. It is also growing more and more rare each year.

One of the strangest aspects of dewy pine ecology is its habitat preferences. Whereas most carnivorous plants enjoy growing in saturated soils or even floating in water, the dewy pine's preferred habitats dry up completely for a considerably portion of the year. Its entire distribution consists of scattered populations throughout the western Iberian Peninsula and northwest Morocco.

Photo by Javier martin licensed under CC BY-SA 3.0

Photo by Javier martin licensed under CC BY-SA 3.0

Its ability to thrive in such xeric conditions is a bit of a conundrum. Plants stay green throughout the year and produce copious amounts of sticky mucilage as a means of catching prey. During the summer months, both air and soil temperatures can skyrocket to well over 100°F (37 °C). Though they possess a rather robust rooting system, dewy pines don't appear to produce much in the way of fine roots. Because of this, any ground water presence deeper in the soil is out of their reach. How then do these plants manage to function throughout the driest parts of the year?

During the hottest months, the only regular supply of water comes in the form of dew. Throughout the night and into early morning, temperatures cool enough for water to condense out of air. Dew covers anything with enough surface area to promote condensation. Thanks to all of those sticky glands on its leaves, the dewy pine possesses plenty of surface area for dew to collect. It is believed that, coupled with the rather porous cuticle of the surface of its leaves, the dewy pine is able to obtain water and reduce evapotranspiration enough to keep itself going throughout the hottest months. 

Dewy pine leaves unfurl like fern fiddle heads as they grow. Photo by Mark Freeth licensed under CC BY 2.0

Dewy pine leaves unfurl like fern fiddle heads as they grow. Photo by Mark Freeth licensed under CC BY 2.0

As you have probably guessed at this point, those dewy leaves do more than photosynthesize and collect water. They also capture prey. Carnivory in this species evolved in response to the extremely poor conditions of their native soils. Nutrients and minerals are extremely low, thus selecting for species that can acquire these necessities via other means. Each dewy pine leaf is covered in two types of glands: stalked glands that produce sticky mucilage, and sessile glands that secrete digestive enzymes and absorb nutrients.

Their ability to capture insects far larger than one would expect is quite remarkable. The more an insect struggles, the more it becomes ensnared. The strength of the dewy pines mucilage likely stems from the fact that the leaves do not move like those of sundews (Drosera spp.). Once an insect is stuck, there is not much hope for its survival. Living in an environment as extreme as this, the dewy pine takes no chances.

Photo by Strombus72 licensed under CC BY-SA 4.0

Photo by Strombus72 licensed under CC BY-SA 4.0

The taxonomic affinity of the dewy pine has been a source of confusion as well. Because of its obvious similarity to the sundews, the dewy pine has long been considered a member of the family Droseraceae. However, although recent genetic work does suggest a distant relationship with Droseraceae and Nepenthaceae, experts now believe that the dewy pine is unique enough to warrant its own family. Thus, it is now the sole species of the family Drosophyllaceae.

Sadly, the dewy pine is losing ground fast. From industrialization and farming to fire suppression, dewy pines are running out of habitat. It is odd to think of a plant capable of living in such extreme conditions as being overly sensitive but that is the conundrum faced by more plants than just the dewy pine. Without regular levels of intermediate disturbance that clear the landscape of vegetation, plants like the dewy pine quickly get outcompeted by more aggressive plant species. Its the fact that dewy pine can live in such hostile environments that, historically, has kept its populations alive and well.

Photo by Javier martin licensed under Public Domain

Photo by Javier martin licensed under Public Domain

What's more, it appears that dewy pines have trouble getting their seeds into new habitats. Low seed dispersal ability means populations can be cut off from suitable habitats that are only modest distances away. Without a helping hand, small, localized populations can disappear alarmingly fast. The good news is, conservationists are working hard on identifying what must be done to ensure the dewy pine is around for future generations to enjoy.

Changes in land use practices, prescribed fires, wild land conservation, and incentives for cattle farmers to adopt more traditional rather than industrial grazing practices may turn the table on dewy pine extinction. Additionally, dewy pines have become a sort of horticultural oddity over the last decade or so. As dedicated growers perfect germination and growing techniques, ex situ conservation can help maintain stocks of genetic material around the globe.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2] [3] [4]

 

 

Meet the Blazing Stars

Liatris_aspera3.jpg

Midsummer in North America is, among other things, Liatris season. These gorgeous plants are often referred to as blazing stars or gayfeathers, which hints at the impact their flowers have on our psyche. Whether in the garden or in the wild, Liatris are a group of plants worth getting to know a bit better.

Liatris is by and large a North American genus with only a single species occurring in the Bahamas. Though we often think of Liatris as prairie plants, the center of diversity for this group is in the southeastern United States. Taxonomically speaking, Liatris are a bit of a conundrum. Something like 40 different species have been described and, where ranges overlap, many putative hybrids have been named.

Rocky Mountain blazing star (Liatris ligulistylis). Photo by Dan Mullen licensed under CC BY-NC-ND 2.0

Rocky Mountain blazing star (Liatris ligulistylis). Photo by Dan Mullen licensed under CC BY-NC-ND 2.0

Authorities on this group cite ample confusion when it comes to drawing lines between species. Much of this confusion comes from the fact that numerous variants and intergradations exist between the various species. As mentioned, hybridization is not uncommon in this genus, which complicates matters quite a bit.

Prairie blazing star (Liatris pycnostachya). Photo by Kcauley licensed under CC BY-SA 4.0

Prairie blazing star (Liatris pycnostachya). Photo by Kcauley licensed under CC BY-SA 4.0

Liatris as a whole appears to have undergone quite an adaptive radiation in North America, with species adapting to specific soils and habitat types. Take, for instance, the case of cylindrical blazing star (L. cylindracea), marsh blazing star (L. spicata), and rough blazing star (L. aspera). The ranges of these species overlap to quite a degree, however, each prefers to grow in soils of specific texture and moisture. Marsh blazing star, as you may have guessed, prefers wetter soils whereas rough blazing star enjoys drier habitats. Cylindrical blazing star seems to enjoy intermediate soil conditions, especially where soil pH is a bit higher. As such, these three species often occur in completely different habitats. However, in places like the southern shores of Lake Michigan, they find themselves growing in close quarters and as a result, a fair amount of hybridization has occurred.

Another example of confusion comes from a species commonly known as the savanna blazing star (Liatris scariosa nieuwlandii). Many different ecotypes of this plant exist and some experts don't quite know how to deal with them all. Sometimes savanna blazing star is treated as a variant of another species called the northern blazing star (Liatris scariosa var. nieuwlandii) and sometimes it is treated as its own distinct species (Liatris nieuwlandii). Until proper genetic work can be done, it is impossible to say which, if any, are correct. 

Glandular blazing star (Liatris glandulosa). Photo by Billy Bob Bain licensed under CC BY 2.0

Glandular blazing star (Liatris glandulosa). Photo by Billy Bob Bain licensed under CC BY 2.0

Taxonomic confusion aside, the various Liatris species and variants are important components of the ecology wherever they occur. Numerous insects feed upon and raise their young on the foliage and few could argue against their flowers as pollinator magnets. All Liatris produce pink to purple flowers in splendid Asteraceae fashion. Every once in a while, an aberrant form is produced that sports white flowers. Though horticulturists have capitalized on this for the garden, at least one authority claims that these white forms are much weaker than their pink flowering parents. At least one species, the pinkscale blazing star (L. elegans), produces large, filamentous white bracts that very much resemble flowers.

Check out the bracts on the pinkscale blazing star (L. elegans)!

Check out the bracts on the pinkscale blazing star (L. elegans)!

Liatris are just as interesting below as they are above. The roots, foliage, and flowers all emerge from a swollen underground stem called a corm. The formation of these corms is one reason why some Liatris species have become so popular in our gardens. It makes them extremely hardy during the dormant season. In the spring, the corm starts forming roots. At the same time, tiny preformed buds at the top of the corm begin to grow this years crop of leaves and flowers. By the end of the growing season, the corm has reached its maximum size for that year and the plant draws down the rest of its reserves to wait out the winter.

Cylindrical blazing star (Liatris cylindracea). Photo by Joshua Mayer licensed under CC BY-SA 2.0

Cylindrical blazing star (Liatris cylindracea). Photo by Joshua Mayer licensed under CC BY-SA 2.0

During this time, some species form a layer of tissue along the edge of the corm that is much darker in coloration than what was laid down earlier in the season. This has led some to suggest that aging individual Liatris is possible. Experts believe that specimens can readily reach 30 to 40 years of age or more, however, the degree to which these dark bands indicate annual growth is up for a lot of debate. Others have found no correlation with plant age. Regardless, it is safe to say that many Liatris species can live for decades if left undisturbed.

Scrub blazing star (Liatris ohlingerae). Photo by FWC Fish and Wildlife Research Institute licensed under CC BY-NC-ND 2.0

Scrub blazing star (Liatris ohlingerae). Photo by FWC Fish and Wildlife Research Institute licensed under CC BY-NC-ND 2.0

All in all, Liatris is a very special, albeit slightly confusing, group of plants. It offers a little something for everyone. What's more, their beauty is only part of the story. These are ecologically important plants that support many great insect species. As summer wears on, make sure to get out there and enjoy the Liatris in your neck of the woods. You will be happy you did!

Photo Credits: [1] [2] [3] [4] [5] [6] [7] [8]

Further Reading: [1] [2] [3]

 

 

 

Life With Endophytic Fungi

Endophytic fungi living in the cells of a grass leaf. Photo by Nick Hill (Public Domain)

Endophytic fungi living in the cells of a grass leaf. Photo by Nick Hill (Public Domain)

Talk about plants long enough and fungi eventually make their way into the conversation. These two walks of life are inextricably linked and probably have been since the earliest days. At this point we are well aware of beneficial fungal partners like mycorrhizae or pathogens like the cedar apple rust. Another type of relationship we are only starting to fully appreciate is that of plants and endophytic fungi living in their above ground tissues. 

Endophytic fungi have been discovered in many different types of plants, however, it is best studied in grasses. The closer we look at these symbiotic relationships, the more complex the picture becomes. There are many ways in which plants can benefit from the presence of these fungi in their tissues and it appears that some plants even stock their seeds with fungi, which appears to give their offspring a better chance at establishment. 

To start, the benefits to the fungi are rather straight forward. They get a relatively safe place to live within the tissues of a plant. They also gain access to all of the carbohydrates the plants produce via photosynthesis. This is not unlike what we see with mycorrhizae. But what about the plants? What could they gain from letting fungi live in and around their cells?

One amazing benefit endophytic fungi offer plants is protection. Fungi are famous for the chemical cocktails they produce and many of these can harm animals. Such benefits vary from plant to plant and fungi to fungi, however, the overall effect is largely the same. Herbivores feeding on plants like grasses that have been infected with endophytic fungi are deterred from doing so either because the fungi make the plant distasteful or downright toxic. It isn't just big herbivores that are deterred either. Evidence has shown that insects are also affected.

There is even some evidence to suggest that these anti-herbivore compounds might have influences farther up the food chain. It usually takes a lot of toxins to bring down a large herbivore, however, some of these toxins have the potential to build up in the tissues of some herbivores and therefore may influence their appeal to predators. Some have hypothesized that the endophytic fungal toxins may make herbivores more susceptible to predators. Perhaps the toxins make the herbivores less cautious or slow them down, making them more likely targets. Certainly more work is needed before anyone can say for sure.

Italian ryegrass (Lolium multiflorum) is one of the most studied grasses that host endophytic fungi. Photo by Matt Lavin licensed under CC BY-SA 2.0

Italian ryegrass (Lolium multiflorum) is one of the most studied grasses that host endophytic fungi. Photo by Matt Lavin licensed under CC BY-SA 2.0

Another amazing example deals with parasitoids like wasps that lay their eggs in other insects. Researchers found that female parasitoid wasps can discriminate between aphids that have been feeding on plants with endophytic fungi and those without endophytic fungi. Wasp larvae developed more slowly and had a shorter lifespan when raised in aphids that have fed on endophytic fungi plants. As such, the distribution of plants with endophytic symbionts may have serious ramifications for parasitoid abundance in any given habitat.

Another benefit these endophytic fungi offer plants is increased photosynthesis. Amazingly, some grasses appear to photosynthesize better with endophytic fungi living in their tissues than plants without fungi. There are many mechanisms by which this may work but to simplify the matter, it appears that by producing defense compounds, endophytic fungi allow the plant to redistribute their metabolic processes towards photosynthesis and growth. In return, the plants produce more carbohydrates that then feed the fungi living in their tissues. 

One of the most remarkable aspects about the relationship between endophytic fungi and plants is that the plants can pass these fungi on to their offspring. Fungi are able to infect the tissues of the host plants' seeds and therefore can be carried with the seeds wherever they go. As the seedlings grow, so do the fungi. Some evidence suggests this gives infected seedlings a leg up on the competition. Other studies have not found such pronounced effects.

Still other studies have shown that it may not be fungi in the seeds that make a big difference but rather the fungi present in the decaying tissues of plants growing around them. Endophytic fungi have been shown to produce allelopathic compounds that poison neighboring plants. Areas receiving lots of plant litter containing endophytic fungi produced fewer plants but these plants grew larger than areas without endophytic fungi litter. Perhaps this reduces competition in favor of plant species than can host said endophytes. Again, this has potentially huge ramifications for the diversity and abundance of plant species living in a given area.

We are only beginning to understand the role of endophytic fungi in the lives of plants and the communities they make up. To date, it would appear that endophytic fungi are potentially having huge impacts on ecosystems around the globe. It goes without saying that more research is needed.

Photo Credits: [1] [2]

Further Reading: [1] [2] [3] [4] [5] [6]

                                                        

The Rose of Jericho

To survive in a desert, plants must eek out an existence in specific microclimates that provide conditions that are only slightly better than the surrounding landscape. Such is the case for the Rose of Jericho (Anastatica hierochuntica). This tenacious little mustard is found throughout arid regions of the Middle East and the Saharan Desert and it has been made famous the world over for its "resurrection" abilities. It is also the subject of much speculation so today we are going to separate fact from fiction and reveal what years of research has taught about this desert survivor. 

Natural selection has shaped this species into an organism fully ready to take advantage of those fleeting moments when favorable growing conditions present themselves. A. hierochuntica makes its living in dry channels called runnels or wadis, which concentrate water during periods of rain. It is a desert annual meaning the growth period of any individual is relatively short. Once all the water in the sandy soil has evaporated, this plant shrivels up and dies. This is not the end of its story though. With a little luck, the plants were pollinated and multiple spoon-shaped fruits have formed on its stems.

Photo by Phil41 licensed under CC BY 1.0

Photo by Phil41 licensed under CC BY 1.0

As the dead husk of the plant starts to dry out, its branches curl up into a ball-like mass with most of the fruits tucked away in the interior. There the plant will sit, often for many years, until rain returns. When rain does finally arrive, things happen fast. After all, who knows how long it will be before it rains again. Thanks to a quirk of physiology, the dried tissues of A. hierochuntica are extremely elastic and can return to their normal shape and position once hydrated. As the soil soaks up water, the dried up stems and roots just under the surface also begin taking up water and the stems unfurl.

To call this resurrection is being a bit too generous. The plant is not returning to life. Instead, its dead tissues simply expand as they imbibe liquid. Water usually does not come to the desert without rain and rain is exactly what A. hierochuntica needs to complete its life cycle. Unfurling of its stems exposes its spoon-shaped fruits to the elements. Their convex shape is actually an adaptation for seed dispersal by rain, a mechanism termed ombrohydrochory. When a raindrop hits the fruit, it catapults the seed outward from the dead parent.

Photo by Roland Unger licensed under CC BY-SA 3.0

Photo by Roland Unger licensed under CC BY-SA 3.0

If rains are light, seeds do not get very far. They tend to cluster around the immediate area of their parent. If rains are heavy, however, seeds can travel quite a distance. This is why one will only ever find this species growing in channels. During the rare occasions when those channels fill with water, seeds quickly float away on the current. In fact, experts believe that the buoyancy of A. hierochuntica seed is an adaptation that evolved in response to flooding events. It is quite ironic that water dispersal is such an important factor for a plant growing in some of the driest habitats on Earth.

To aid in germination, the seeds themselves are coated in a material that becomes mucilaginous upon wetting. When the seeds eventually come into contact with the soil, the mucilage sticks to the ground and causes the seeds to adhere to the surface upon drying. This way, they are able to effectively germinate instead of blowing around in the wind.

Again, things happen fast for A. hierochuntica. Most of its seeds will germinate within 12 hours of rainfall. Though they are relatively drought tolerant, the resulting seedlings nonetheless cannot survive without water. As such, their quick germination allows them to make the most out of fleeting wet conditions.

Photo by Nikswieweg at German Wikipedia licensed under CC BY-SA 2.0 DE

Photo by Nikswieweg at German Wikipedia licensed under CC BY-SA 2.0 DE

Occasionally, the balled up husks of these plants will become dislodged from the sand and begin to blow around the landscape like little tumbleweeds. This has led some to suggest that A. hierochuntica utilizes this as a form a seed dispersal, scattering seeds about the landscape as it bounces around in the wind. Though this seems like an appealing hypothesis, experts believe that this is not the best means of disseminating propagules. Seeds dispersed in this way are much less likely to end up in favorable spots for germination. Though it certainly occurs, it is likely that this is just something that happens from time to time rather than something the plant has evolved to do.

In total, the Rose of Jericho is one tough cookie. Thanks to quick germination and growth, it is able to take advantage of those rare times when its desert environment become hospitable.

Photo Credits: [1] [2] [3] [4]

Further Reading: [1] [2] [3] [4]

The Curious Case of the Yellowwood Tree

Photo by Plant Image Library licensed under CC BY-SA 2.0

Photo by Plant Image Library licensed under CC BY-SA 2.0

The immense beauty and grace of the yellowwood (Cladrastis kentukea) is inversely proportional to its abundance. This unique legume is endemic to the eastern United States and enjoys a strangely patchy distribution. Its ability to perform well when planted far outside of its natural range only deepens the mystery of the yellowwood.

The natural range of the yellowwood leaves a lot of room for speculation. It hits its highest abundances in the Appalachian and Ozark highlands where it tends to grow on shaded slopes in calcareous soils. Scattered populations can be found as far west as Oklahoma and as far north as southern Indiana but nowhere is this tree considered a common component of the flora.

Cladrastis_kentukea_range_map_1.png

Though the nature of its oddball distribution pattern iscurious to say the least, it is likely that its current status is the result of repeated glaciation events and a dash of stochasticity. The presence of multiple Cladrastis species in China and Japan and only one here in North America is a pattern shared by multiple taxa that once grew throughout each continent. A combination of geography, topography, and repeated glaciation events has since fragmented the ranges of many genera and perhaps Cladrastis is yet another example.

The fact that yellowwood seems to perform great as a specimen tree well outside of its natural range says to me that this species was probably once far more wide spread in North America than it is today. It may have been pushed south by the ebb and flow of the Laurentide Ice Sheet and, due to the stochastic nuances of seed dispersal, never had a chance to recolonize the ground it had lost. Again, this is all open to speculation as this point.

Despite being a member of the pea family, yellowwood is not a nitrogen fixer. It does not produce nodules on its roots that house rhizobium. As such, this species may be more restricted by soil type than other legumes. Perhaps its inability to fix nitrogen is part of the reason it tends to favor richer soils. It may also have played a part in its failure to recolonize land scraped clean by the glaciers.

Yellowwood's rarity in nature only makes finding this tree all the more special. It truly is a sight to behold. It isn't a large tree by any standards but what it lacks in height it makes up for in looks. Its multi-branched trunk exhibits smooth, gray bark reminiscent of beech trees. Each limb is decked out in large, compound leaves that turn bright yellow in autumn.

Photo by Elektryczne jabłko licensed under CC BY-SA 4.0

Photo by Elektryczne jabłko licensed under CC BY-SA 4.0

When mature, which can take upwards of ten years, yellowwood produces copious amounts of pendulous inflorescences. Each inflorescence sports bright white flowers with a dash of yellow on the petals. In some instances, even pink flowers are produced! It doesn't appear that any formal pollination work has been done on this tree but surely bees and butterflies alike visit the blooms. The name yellowwood comes from the yellow coloration of its heartwood, which has been used to make furniture and gunstocks in the past.

Whether growing in the forest or in your landscape, yellowwood is one of the more stunning trees you will find in eastern North America. Its peculiar natural history only lends to its allure.

Photo Credits: [1] [2] [3]

Further Reading: [1] [2]

The Mystery of the Ghost Plant

Photo by Felipe Fenrisvarg licensed under CC BY-NC-SA 2.0

Photo by Felipe Fenrisvarg licensed under CC BY-NC-SA 2.0

As houseplants enjoy a resurgence in our culture, untold numbers of novice and expert growers alike will have undoubtedly tried their luck at a succulent or two. Succulent, of course, is not a taxonomic division, but rather a way of describing the anatomy of myriad plants adapted to harsh, dry environments around the world. One of the most common succulents in the trade is the ghost plant (Graptopetalum paraguayense).

I would bet that, if you are reading this and you grow houseplants, you have probably grown a ghost plant at one point or another. They are easy to grow and will propagate a whole new plant from only a single leaf. Despite its worldwide popularity, the ghost plant is shrouded in mystery and confusion. To date, we know next to nothing about its ecology. Much of this stems from poor record keeping and the fact that we have no idea exactly where this species originated.

That's right, we do not know the location of its native habitat. Records indicate that the first plants to find their way into human hands were imported into New York in 1904. Apparently, they were growing as "weeds" at the base of some South American cacti. Plants were lucky enough to wind up in the hands of competent botanists and the species has ended up with the name Graptopetalum paraguayense. The specific epithet "paraguayense" was an indication of much confusion to come as it was thought that the ghost plant originated in Paraguay.

Time has barely improved our knowledge. Considering many of its relatives hail from Mexico, it gradually became more apparent that South America could not claim this species as its own. Luck changed only relatively recently with the discovery of a population of a unique color variant of the ghost plant on a single mountain in northeastern Mexico. A thorough search of the area did not reveal any plants that resemble the plant so many of us know and love. It has been suggested that the original population from which the type species was described is probably growing atop an isolated mountain peak somewhere nearby in the Chihuahuan Desert.

Despite all of the mystery surrounding this species, we can nonetheless elucidate some aspects about its biology by observing plants in cultivation. It goes without saying that the ghost plant is a species of dry, nutrient-poor habitats. Its succulence and tolerance of a wide array of soil conditions is a testament to its hardy disposition. Also, if plants are grown in full sun, they develop a bluish, waxy coating on their leaves. This is likely a form of sunscreen that the plant produces to protect it from sun scorch. As such, one can assume that its native habitat is quite sunny, though its ability to tolerate shade suggests it likely shares its habitat with shrubby vegetation as well. Given enough time and proper care, ghost plants will produce sprays of erect, 5 pointed flowers. It is not known who might pollinate them in the wild.

It is always interesting to me that a plant can be so well known to growers while at the same time being a complete mystery in every other way. A search of the literature shows that most of the scientific attention given to the ghost plant centers on potentially useful compounds that can be extracted from its tissues. Such is the case for far too many plant species, both known and unknown alike. Perhaps, in the not too distant future, some intrepid botanist will at last scramble up the right mountain and rediscover the original habitat of this wonderful plant. Until then, I hope this small introduction provides you with a new found appreciation for this wonderfully adaptable houseplant.

Photo Credits: [1]

Further Reading: [1] [2] [3]

 

Of Bluebells and Fungi

Photo by Christophe Couckuyt licensed under CC BY 2.0

Photo by Christophe Couckuyt licensed under CC BY 2.0

Whether in your garden or in the woods, common bluebells (Hyacinthoides non-scripta) are a delightful respite from the dreary months of winter. It should come as no surprise that these spring geophytes are a staple in temperate gardens the world over. And, as amazing as they are in the garden, bluebells are downright fascinating in the wild.

Bluebells can be found growing naturally from the northwestern corner of Spain north into the British Isles. They are largely a woodland species, though finding them in meadows isn't uncommon. They are especially common in sites that have not experienced much soil disturbance. In fact, large bluebell populations are used as indicators of ancient wood lots.

Photo by RX-Guru licensed under CC BY-SA 3.0

Photo by RX-Guru licensed under CC BY-SA 3.0

Being geophytes, bluebells cram growth and reproduction into a few short weeks in spring. We tend to think of plants like this as denizens of shade, however, most geophytes get going long before the canopy trees have leafed out. As such, these plants are more accurately sun bathers. On warm days, various bees can be seen visiting the pendulous flowers, with the champion pollinator being the humble bumble bees.

The above ground beauty of bluebells tends to distract us from learning much about their ecology. That hasn't stopped determined scientists though. Plenty of work has been done looking at how bluebells make their living and get on with their botanical neighbors. In fact, research is turning up some incredible data regarding bluebells and mycorrhizal fungi.

Photo by Mick Garratt licensed under CC BY-SA 2.0

Photo by Mick Garratt licensed under CC BY-SA 2.0

Bluebell seeds tend not to travel very far, most often germinating near the base of the parent. Germination occurs in the fall when temperatures begin to drop and the rains pick up. Interestingly, bluebell seeds actually germinate within the leaf litter and begin putting down their initial root before the first frosts. Often this root is contractile, pulling the tiny seedling down into the soil where it is less likely to freeze. During their first year, phosphorus levels are high. Not only does the nutrient-rich endosperm supply the seedling with much of its initial needs, abundant phosphorus near the soil surface supplies more than enough for young plants. This changes as the plants age and change their position within the soil.

Photo by MichaelMaggs licensed under CC BY-SA 3.0

Photo by MichaelMaggs licensed under CC BY-SA 3.0

Over the next 4 to 5 years, the bluebell's contractile roots pull it deeper down into the soil, taking it out of the reach of predators and frost. This also takes them farther away from the nutrient-rich surface layers. What's more, the roots of older bluebells are rather simple structures. They do not branch much, if at all, and they certainly do not have enough surface area for proper nutrient uptake. This is where mycorrhizae come in.

Hyacinthoides_non-scripta_Sturm39.jpg

Bluebells partner with a group of fungi called arbuscular mycorrhiza, which penetrate the root cells, thus greatly expanding the effective rooting zone of the plant. Plants pay these fungi in carbohydrates produced during photosynthesis and in return, the fungi provide the plants with access to far more nutrients than they would be able to get without them. One of the main nutrients plants gain from these symbiotic fungi is phosphorus.

Photo by Oast House Archive licensed under CC BY-SA 2.0

Photo by Oast House Archive licensed under CC BY-SA 2.0

For bluebells, with age comes new habitat, and with new habitat comes an increased need for nutrients. This is why bluebells become more dependent on arbuscular mycorrhiza as they age. In fact, plants grown without these fungi do not come close to breaking even on the nutrients needed for growth and maintenance and thus live a shortened life of diminishing returns. This is an opposite pattern from what we tend to expect out of mycorrhizal-dependent plants. Normally its the seedlings that cannot live without mycorrhizal symbionts. It just goes to show you that even familiar species like the bluebell can offer us novel insights into the myriad ways in which plants eke out a living.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1] [2]

 

One Mustard, Many Flavors

Photo by Kurt Kulac licensed under CC BY-SA 3.0

Photo by Kurt Kulac licensed under CC BY-SA 3.0

What do kale, broccoli, cauliflower, Brussel sprouts, and cabbage have in common? They are all different cultivars of the same species!

Wild cabbage (Brassica oleracea) is native to coastal parts of southern and western Europe. In its native habitat, wild cabbage is very tolerant of salty, limey soils but not so tolerant of competition. Because of this, it tends to grow mainly on limestone sea cliffs where few other plants can dig their roots in.

Despite their popularity as delicious, healthy vegetables, as well as their long history of cultivation, there is scant record of this plant before Greek and Roman times. Some feel that this is one of the oldest plants in cultivation. Along with the countless number of edible cultivars, the wild form of Brassica oleracea can be found growing throughout the world, no doubt thanks to its popularity among humans.

I am always amazed by how little we know about crop wild relatives. Despite the popularity of its many agricultural cultivars, relatively little attention has been paid to B. oleracea in the wild. What we do know is that at least two subspecies have been identified - B. oleracea ssp. bourgeaui and B. oleracea L. ssp. oleracea. As far as anyone can tell, subspecies 'oleracea' is the most wide spread in its distribution whereas subspecies 'bourgeaui'  is only known from the Canary Islands. 

© Copyright Evelyn Simak licensed under CC BY-SA 2.0

© Copyright Evelyn Simak licensed under CC BY-SA 2.0

B. oleracea's long history with humans confuses matters quite a bit. Because it has been cultivated for thousands of years, identifying which populations represent wild individuals and which represent ancient introductions is exceedingly difficult. Such investigations are made all the more difficult by a lack of funding for the kind of research that would be needed to elucidate some of these mysteries. We know so little about wild B. oleracea that the IUCN considers is a species to be "data deficient."

It seems to appreciate cool, moist areas and will sometimes escape from cultivation if conditions are right, thus leading to the confusion mentioned above. It is amazing to look at this plant and ponder all the ways in which humans have selectively bred it into the myriad shapes, sizes, and flavors we know and love (or hate) today! However, we must pay more attention to the wild progenitors of our favorite crops. They harbor much needed genetic diversity as well as clues to how these plants are going to fare as our climates continue to change.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3]

Trout Lily Appreciation

This video is a celebration of the white trout lily (Erythronium albidum) and its various spring ephemeral neighbors. We even talk about the threat that invasive species like garlic mustard (Alliara petiolata).

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Botanist
Track:
https://verdant-realm-botanist.bandcamp.com/

Prescribed Fire On An Illinois Prairie

Prairies are fire adapted ecosystems. For far too long, fires were sequestered. Today, more and more communities are coming around to the fact that fire can be used as a tool to bring life back to these endangered ecosystems. In this video, we get hands on experience with fire as a prairie restoration tool.

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Stranger In My Town
Track: Terra
https://strangerinmytown.bandcamp.com/

 

Early Spring Ephemerals

Join us as we go in search of some of the earliest spring ephemerals. In this episode we come face to face with the aptly named harbinger of spring (Erigenia bulbosa) and the lovely Hepatica nobilis.

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Stranger In My Town
Track: Air
https://strangerinmytown.bandcamp.com/

Life On a Floodplain

Floodplains can be pretty rough places for plant life. Despite readily a available water supply, the unpredictable, disturbance-prone nature of these habitats means that static lifeforms such as plants need to be quite adaptable to survive and persist. Join In Defense of Plants for a brief look at this sort of ecosystem.

Producer, Editor, Camera: Grant Czadzeck (http://www.grantczadzeck.com)

Music by
Artist: Somali Yacht Club
Track: Up In The Sky
http://somaliyachtclub.bandcamp.com

North America's Pachysandra

Photo by Salicyna licensed under CC BY-SA 4.0

Photo by Salicyna licensed under CC BY-SA 4.0

In the interest of full disclosure, I have never been a fan of garden variety Pachysandra. Long before I had any interest in plants or gardening, there was something about this groundcover that simply did not appeal to me. Fast forward more than a decade and my views on the use of Asian Pachysandra in the garden have not changed much. You can imagine my surprise then when I learned that North America has its own representative of this genus - the Allegheny spurge (Pachysandra procumbens).

My introduction to P. procumbens happened during a tour of the Highlands Botanical Garden in Highlands, North Carolina. I recognized its shape and my initial reaction was alarm that a garden specializing in native plants would showcase a non-native species. My worry was quickly put to rest as the sign informed me that this lovely groundcover was in fact indigenous to this region. Indeed, P. procumbens can be found growing in shady forest soils from North Carolina down to Florida and Texas.

Photo by David J. Stang licensed under CC BY-SA 4.0

Photo by David J. Stang licensed under CC BY-SA 4.0

This species is yet another representative of a curious disjunction in major plant lineages between North America and eastern Asia. Whereas North America has this single species of Pachysandra, eastern Asia boasts two, P. axillaris and P. terminalis. Such a large gap in the distribution of this genus (as well as many others) seems a bit strange until one considered the biogeographic history of the two continents.

Many thousands of years ago, sea levels were much lower than they are today. This exposed land bridges between continents which today are hundreds of feet under water. During favorable climatic periods, Asia and North America likely shared a considerable amount of their respective floras, a fact we still find evidence of today. The Pachysandra are but one example of a once connected distribution that has been fragmented by subsequent sea level rise. Fossil records of Pachysandra have been found in regions of British Columbia, Washington, Oregon, Wyoming, and North and South Dakota and provide further confirmation of this.

As a species, P. procumbens is considered a subshrub. It is slow growing but given time, populations can grow to impressive sizes. In spring, numerous fragrant, white flower spikes emerge that are slowly eclipsed by the flush of spring leaf growth. The flowers themselves are intriguing structures worthy of close inspection. Their robust form is what gives this genus its name. "Pachys" is Greek for thick and "andros" is Greek for male, which refers to the thickened filaments that support the anthers.

It is hard to say for sure why this species is not as popular in horticulture as its Asian cousins. It tolerates a wide variety of soil types and does well in shade. What's more, it is mostly ignored by all but the hungriest of deer. And, at the end of the day, it took this species to change my mind about Pachysandra. After all, each and every species has a story to tell.

Photo Credits: [1] [2]

Further Reading: [1] [2]

Daffodil Insights

Photo by Amanda Slater licensed under CC BY-SA 2.0

Photo by Amanda Slater licensed under CC BY-SA 2.0

Daffodils seem to be everywhere. Their horticultural popularity means that, for many of us, these plants are among the first flowers we see each spring. Daffodils are so commonplace that it's as if they evolved to live in our gardens and nowhere else. Indeed, daffodils have had a long, long history with human civilization, so much so that it is hard to say when our species first started to cohabitate. Our familiarity with these plants belies an intriguing natural history. What follows is a brief overview of the world of daffodils. 

If you are like me, then you may have gone through most of your life not noticing much difference between garden variety daffodils. Though many of us will be familiar with only a handful of daffodil species and cultivars, these introductions barely scratch the surface. One may be surprised to learn that as of 2008, more than 28,000 daffodil varieties have been named and that number continues to grow each and every year. Even outside of the garden, there is some serious debate over the number of daffodil species, much of this having to do with what constitutes a species in this group.

Narcissus poeticus

Narcissus poeticus

As I write this, all daffodils fall under the genus Narcissus. Estimates as to the number of species within Narcissus range from as few as 50 to as many as 80. The genus itself sits within the family Amaryllidaceae and is believed to have originated somewhere between the late Oligocene and early Miocene, some 18 to 30 million years ago. Despite its current global distribution, Narcissus are largely Mediterranean plants, with peak diversity occurring on the Iberian Peninsula. However, thanks to the aforementioned long and complicated history in cultivation, it has become quite difficult to understand the full range of diversity in form and habitat of many species. To understand this, we first need to understand a bit about their reproductive habits.

Much of the evolution of Narcissus seems to center around floral morphology and geographic isolation. More specifically, the length of the floral tube or "corona" and the position of the sexual organs within, dictates just who can effectively pollinate these plants. The corona itself is not made up of petals or sepals but instead, its tube-like appearance is due to a fusion of the stamens into the famous trumpet-like tube we know and love.

Illustration_Narcissus_poeticus0.jpg

Variation in corona shape and size has led to the evolution of three major pollination strategies within this genus. The first form is the daffodil form, whose stigma is situated at the mouth of the corolla, well beyond the 6 anthers. This form is largely pollinated by larger bees. The second form is the paperwhite form, whose stigma is situated more closely to or completely below the anthers at the mouth of the corona. This form is largely pollinated by various Lepidoptera as well as long tongued bees and flies. The third form is the triandrus form, which exhibits three distinct variations on stigma and anther length, all of which are situated deep within the long, narrow corona. The pendant presentation of the flowers in this group is thought to restrict various butterflies and moths from entering the flower in favor of bees.

Narcissus tazetta. Photo by Fanghong licensed under CC BY-SA 3.0

Narcissus tazetta. Photo by Fanghong licensed under CC BY-SA 3.0

The variations on these themes has led to much reproductive isolation among various Narcissus populations. Plants that enable one type of pollinator usually do so at the exclusion of others. Reproductive isolation plus geographic isolation brought on by differences in soil types, habitat types, and altitudinal preferences is thought to have led to a rapid radiation of these plants across the Mediterranean. All of this has gotten extremely complicated ever since humans first took a fancy to these bulbs.

Narcissus cyclamineus. Photo by Francine Riez licensed under CC BY-SA 3.0

Narcissus cyclamineus. Photo by Francine Riez licensed under CC BY-SA 3.0

Reproductive isolation is not perfect in these plants and natural hybrid zones do exist where the ranges of two species overlap. However, hybridization is made much easier with the helping hand of humans. Whether via landscape disturbance or direct intervention, human activity has caused an uptick in Narcissus hybridization. For centuries, we have been mixing these plants and moving them around with little to no record as to where they originated. What's more, populations frequently thought of as native are actually nothing more than naturalized individuals from ancient, long-forgotten introductions. For instance, Narcissus populations in places like China, Japan, and even Great Britain originated in this manner.

All of this mixing, matching, and hybridizing lends to some serious difficulty in delineating species boundaries. It would totally be within the bounds of reason to ask if some of the what we think of as species represent true species or simply geographic varieties on the path to further speciation. This, however, is largely speculative and will require much deeper dives into Narcissus phylogenetics.

Narcissus triandrus. Photo by Dave Gough licensed under CC BY 2.0

Narcissus triandrus. Photo by Dave Gough licensed under CC BY 2.0

Despite all of the confusion surrounding accurate Narcissus taxonomy, there are in fact plenty of true species worth getting to know. These range in form and habit far more than one would expect from horticulture. There are large Narcissus and small Narcissus. There are Narcissus with yellow flowers and Narcissus with white flowers. Some species produce upright flowers and some produce pendant flowers. There are even a handful of fall-blooming Narcissus. The variety of this genus is staggering if you are not prepared for it.

Narcissus viridiflorus - a green, fall-blooming daffodil. Photo by A. Barra licensed under CC BY 3.0

Narcissus viridiflorus - a green, fall-blooming daffodil. Photo by A. Barra licensed under CC BY 3.0

After pollination, the various Narcissus employ a seed dispersal strategy that doesn't get talked about enough in reference to this group. Attached to each hard, black seed are fatty structures known as eliasomes. Eliasomes attract ants. Like many spring flowering plant species around the globe, Narcissus utilize ants as seed dispersers. Ants pick up the seeds and bring them back to their nests. They go about removing the eliasomes and then discard the seed. The seed, safely tucked away in a nutrient-rich ant midden, has a much higher chance of germination and survival than if things were left up to simple chance. It remains to be seen whether or not Narcissus obtain similar seed dispersal benefits from ants outside of their native range. Certainly Narcissus populations persist and naturalize readily, however, I am not aware if ants have any part in the matter.

The endangered Narcissus alcaracensis. Photo by José Luis López González licensed under CC BY-SA 4.0

The endangered Narcissus alcaracensis. Photo by José Luis López González licensed under CC BY-SA 4.0

Despite their popularity in the garden, many Narcissus are having a hard go of it in the wild. Habitat destruction, climate change, and rampant collecting of wild bulbs are having serious impacts on Narcissus numbers. The IUCN considered at least 5 species to be endangered and a handful of some of the smaller species already thought to be extinct in the wild. In response to some of these issues, protected areas have been established that encompass at least some of the healthy populations that remain for some of these species.

If you are anything like me, you have ignored Narcissus for far too long. Sure, they aren't native to the continent on which I live, and sure, they are one of the most commonly used plants in a garden setting, but every species has a story to tell. I hope that, armed with this new knowledge, you at least take a second look at the Narcissus popping up around your neighborhood. More importantly, I hope this introduction makes you appreciate their wild origins and the fact that we still have much to learn about these plants. I have barely scratched the surface of this genus and there is more more information out there worth perusing. Finally, I hope we can do better for the wild progenitors of our favorite garden plants. They need all the help they can get and unless we start speaking up and working to preserve wild spaces, all that will remain are what we have in our gardens and that is not a future I want to be a part of.

Photo Credits: [1] [2] [3] [4] [5] [6] [7]

Further Reading: [1] [2] [3] [4] [5] [6] [7] [8] [9]

 

Meet the Ocotillo

Copy of IMG_4077.JPG

I love the ocotillo (Fouquieria splendens) for many reasons. It is an impossible plant to miss with its spindly, spine-covered stems. It is a lovely plant that is right at home in the arid parts of southwestern North America. Beyond its unique appearance, the ocotillo is a fascinating and important component of the ecology of this region.

My first impression of ocotillo was interesting. I could not figure out where this plant belonged on the tree of life. As a temperate northeasterner, one can forgive my taxonomic ignorance of this group. The family from which it hails, Fouquieriaceae, is restricted to southwestern North America. It contains one genus (Fouquieria) and about 11 species, all of which are rather spiky in appearance.

IMG_4079(1).JPG

Of course, those spines serve as protection. Resources like water are in short supply in desert ecosystems so these plants ensure that it is a real struggle for any animal looking to take a bite to get at the sap inside. Those spines are tough as well. One manged to pierce the underside of my boot during a hike and I was lucky that it just barely grazed the underside of my foot. Needless to say, the ocotillo is a plant worthy of attention and respect.

One of the most striking aspects of ocotillo life is how quickly these plants respond to water. As spring brings rain to this region of North America, ocotillo respond with wonderful sprays of bright red flowers situated atop their spindly stems. These blooms are usually timed so as to take advantage of migrating hummingbirds and emerging bees. The collective display of a landscape full of blooming ocotillo is jaw-droppingly gorgeous and a sight one doesn't soon forget. It is as if the whole landscape has suddenly caught on fire. Indeed, the word "ocotillo" is Spanish for "little torch."

DSCN4088.JPG

Flowering isn't the only way this species responds to the sudden availability of water. A soaking rain will also bring about an eruption of leaves, turning its barren, white stems bright green. The leaves themselves are small and rather fragile. They do not have the tough, succulent texture of what one would expect out of a desert specialist. That is because they don't have to ride out the hard times. Instead, ocotillo are what we call a drought deciduous species, producing leaves when times are good and water is in high supply, and dropping them as soon as the soil dries out.

DSCN4280.JPG

This cycle of growing and dropping leaves can and does happen multiple times per year. It is not uncommon to see ocotillo leaf out up to 4 or 5 times between spring and fall. During the rest of the year, ocotillo relies on chlorophyll in its stems for its photosynthetic needs. Interestingly enough, this poses a bit of a challenge when it comes to getting enough CO2. Whereas leaves are covered in tiny pours called stomata which help to regulate gas exchange, the stems of an ocotillo are a lot less porous, making it a challenge to get gases in and out. This is where the efficient metabolism of this plant comes in handy.

All plants undergo respiration like you and me. The carbohydrates made during photosynthesis are broken down to fuel the plant and in doing so, CO2 is produced. Amazingly, the ocotillo (as well as many other plants that undergo stem photosynthesis) are able to recycle the CO2 generated by cellular respiration back into photosynthesis within the stem. In this way, the ocotillo is fully capable of photosynthesis even without leaves.

DSCN4295.JPG

Through the good times and the bad, the ocotillo and its relatives are important components of desert ecology. They are as hardy as they are beautiful and getting to see them in person has been a remarkable experience. They ad a flare of surreality to the landscape that must be seen in person to believe.

Further Reading: [1] [2] [3] [4] [5]

Apocynaceae Ant House

Bullate leaves help the vine clasp to the tree as well as house ant colonies. Photo by Richard Parker licensed under CC BY-NC-SA 2.0

Bullate leaves help the vine clasp to the tree as well as house ant colonies. Photo by Richard Parker licensed under CC BY-NC-SA 2.0

The dogbane family, Apocynaceae, comes in many shapes, sizes, and lifestyles. From the open-field milkweeds we are most familiar with here in North America to the cactus-like Stapeliads of South Africa, it would seem that there is no end to the adaptive abilities of this family. Being an avid gardener both indoors and out, the diversity of Apocynaceae means that I can be surrounded by these plants year round. My endless quest to grow new and interesting houseplants was how I first came to know a genus within the family that I find quite fascinating. Today I would like to briefly introduce you to the Dischidia vines.

The genus Dischidia is native to tropical regions of China. Like its sister genus Hoya, these plants grow as epiphytic vines throughout the canopy of warm, humid forests. Though they are known quite well among those who enjoy collecting horticultural curiosities, Dischidia as a whole is relatively understudied. These odd vines do not attach themselves to trees via spines, adhesive pads, or tendrils. Instead, they utilize their imbricated leaves to grasp the bark of the trunks and branches they live upon.

The odd, bulb-like leaves of the urn vine (Dischidia rafflesiana) Photo by Bernard DUPONT licensed under CC BY-SA 2.0

The odd, bulb-like leaves of the urn vine (Dischidia rafflesiana) Photo by Bernard DUPONT licensed under CC BY-SA 2.0

One thing we do know about this genus is that most species specialize in growing out of arboreal ant nests. Ant gardens, as they are referred to, offer a nutrient rich substrate for a variety of epiphytic plants around the world. What's more, the ants will visciously defend their nests and thus any plants growing within.

The flowers of  Dischidia ovata Photo by Krzysztof Ziarnek, Kenraiz licensed under CC BY-SA 4.0

The flowers of Dischidia ovata Photo by Krzysztof Ziarnek, Kenraiz licensed under CC BY-SA 4.0

Some species of Dischidia take this relationship with ants to another level. A handful of species including D. rafflesiana, D. complex, D. major, and D. vidalii produce what are called "bullate leaves." These leaves start out like any other leaf but after a while the edges stop growing. This causes the middle of the leaf to swell up like a blister. The edges then curl over and form a hollow chamber with a small entrance hole.

Photo by Krzysztof Ziarnek, Kenraiz licensed under CC BY-SA 4.0

These leaves are ant domatia and ant colonies quickly set up shop within the chambers. This provides ample defense for the plant but the relationship goes a little deeper. The plants produce a series of roots that crisscross the inside of the leaf chamber. As ant detritus builds up inside, the roots begin to extract nutrients. This is highly beneficial for an epiphytic plant as nutrients are often in short supply up in the canopy. In effect, the ants are paying rent in return for a place to live.

Growing these plants can take some time but the payoff is worth. They are fascinating to observe and certainly offer quite a conversation piece as guests marvel at their strange form.

Photo Credits: [1] [2] [3] [4] [5]

Further Reading: [1]

The Wild World of the Creosote Bush

25774192773_b250a3d5e1_o.jpg

Apart from the cacti, the real rockstar of my Sonoran experience was the creosote bush (Larrea tridentata). Despite having been quite familiar with creosote as an ingredient, I admit to complete ignorance of the plant from which it originates. Having no familiarity with the Sonoran Desert ecosystem, I was walking into completely new territory in regard to the flora. It didn’t take long to notice creosote though. Once we hit the outskirts of town, it seemed to be everywhere.

If you are in the Mojave, Sonoran, and Chihuahuan Deserts of western North America, you are never far from a creosote bush. They are medium sized, slow growing shrubs with sprays of compact green leaves, tiny yellow flowers, and fuzzy seeds. Apparently what is thought of as one single species is actually made up of three different genetic populations. The differences between these has everything to do with chromosome counts. Populations in the Mojave Desert have 78 chromosomes, Sonoran populations have 52 chromosomes, and Chihuahuan have 26. This may have to do with the way in which these populations have adapted to the relative amounts of rainfall each of these deserts receive throughout the year, however, it is hard to say for sure.

IMG_4229.JPG

Regardless, creosote is supremely adapted to these xeric ecosystems. For starters, their branching architecture coupled with their tiny leaves are arranged so as to make the most out of favorable conditions. If you stare at these shrubs long enough, you may notice that their branches largely orient towards the southeast. Also, their leaves tend to be highly clustered along the branches. It is thought that this branching architecture allows the creosote to minimize water loss while maximizing photosynthesis.

Deserts aren’t hot 24 hours per day. Night and mornings are actually quite cool. By taking advantage of the morning sun as it rises in the east, creosote are able to open their stomata and commence photosynthesis during those few hours when evapotranspiration would be at its lowest. In doing so, they are able to minimize water loss to a large degree. Although their southeast orientation causes them to miss out on afternoon and evening sun to a large degree, the benefits of saving precious water far outweigh the loss to photosynthesis. The clustering of the leaves along the branches may also reduce overheating by providing their own shade. Coupled with their small size, this further reduces heat stress and water loss during the hottest parts of the day.

IMG_4392.JPG

Creosote also secrets lots of waxy, resinous compounds. These coat the leaves and to some extent the stems, making them appear lacquered. It is thought that this also helps save water by reducing water loss through the leaf cuticle. However, the sheer diversity of compounds extracted from these shrubs suggests other functions as well. It is likely that at least some of these compounds are used in defense. One study showed that when desert woodrats eat creosote leaves, the compounds within caused the rats to lose more water through their urine and feces. They also caused a reduction in the amount of energy the rats were able to absorb from food. In other words, any mammal that regularly feeds on creosote runs the risk of both dehydration and starvation. This isn’t the only interesting interaction that creosote as with rodents either. Before we get to that, however, we first need to discuss roots.

IMG_4189.JPG

Creosote shrubs have deep root systems that are capable of accessing soil water that more shallowly rooted plants cannot. This brings them into competition with neighboring plants in intriguing ways. When rainfall is limited, shallowly rooted species like Opuntia gain access to water before it has a chance to reach deeper creosote roots. Surprisingly this happens more often than you would think. The branching architecture of creosote is such that it tends to accumulate debris as winds blow dust around the desert landscape. As a result, the soils directly beneath creosote often contain elevated nutrients. This coupled with the added shade of the creosote canopy means that seedlings that find themselves under creosote bushes tend to do better than seedlings that germinated elsewhere. As such, creosote are considered nurse plants that actually facilitate the growth and survival of surrounding vegetation. So, if recruitment and resulting competition from vegetation can become such an issue for long term creosote survival, why then do we still so much creosote on the landscape?

IMG_4228.JPG

The answer may lie in rodents and other burrowing animals in these desert ecosystems. Take a look at the base of a large creosote and you will often find the ground littered with burrows. Indeed, many a mammal finds the rooting zone of the creosote shrub to be a good place to dig a den. When these animals burrow under shallowly rooted desert plants, many of them nibble on and disturb the rooting zones. Over the long-term, this can be extremely detrimental for the survival of shallow rooted species. This is not the case for creosote. Its roots run so deep that most burrowing animals cannot reach them. As such, they avoid most of the damage that other plants experience. This lends to a slight survival advantage for creosote at the expense of neighboring vegetation. In this way, rodents and other burrowing animals may actually help reduce competition for the creosote.

Barring major disturbances, creosote can live a long, long time. In fact, one particular patch of creosote growing in the Mojave Desert is thought to be one of the oldest living organisms on Earth. As creosote shrubs grow, they eventually get to a point in which their main stems break and split. From there, they begin producing new stems that radiate out in a circle from the original plant. These clones can go on growing for centuries. By calculating the average growth rate of these shrubs, experts have estimated that the Mojave specimen, affectionately referred to as the “King Clone,” is somewhere around 11,700 years old!

The ring of creosote that is King Clone.

The ring of creosote that is King Clone.

For creosote, its slow and steady wins the race. They are a backbone of North American desert ecosystems. Their structure offers shelter, their seeds offer food, and their flowers support myriad pollinators. Creosote is one shrub worthy of our respect and admiration.

Photo Credit: [1] [2]

Further Reading: [1] [2] [3] [4]

Palo Verde

DSCN4207.JPG

One of the first plants I noticed upon arriving in the Sonoran Desert were these small spiny trees without any leaves. The reason they caught my eye was that every inch of them was bright green. It was impossible to miss against the rusty brown tones of the surrounding landscape. It didn’t take long to track down the identity of this tree. What I was looking at was none other than the palo verde (Parkinsonia florida).

Palo verde belong to a small genus of leguminous trees. Parkinsonia consists of roughly 12 species scattered about arid regions of Africa and the Americas. The common name of “palo verde” is Spanish for “green stick.” And green they are! Like I said, every inch of this tree gives off a pleasing green hue. Of course, this is a survival strategy to make the most of life in arid climates.

IMG_4072.JPG

Despite typically being found growing along creek beds, infrequent rainfall limits their access to regular water supplies. As such, these trees have adapted to preserve as much water as possible. One way they do this is via their deciduous habit. Unlike temperate deciduous trees which drop their leaves in response to the changing of the seasons, palo verde drop their leaves in response to drought. And, as one can expect from a denizen of the desert, drought is the norm. Leaves are also a conduit for moisture to move through the body of a plant. Tiny pours on the surface of the leaf called stomata allow water to evaporate out into the environment, which can be quite costly when water is in short supply.

The tiny pinnate leaves and pointy stems of the palo verde. 

The tiny pinnate leaves and pointy stems of the palo verde. 

Not having leaves for most of the year would be quite a detriment for most plant species. Leaves, after all, are where most of the photosynthesis takes place. That is, unless, you are talking about a palo verde tree. All of that green coloration in the trunk, stems, and branches is due to chlorophyll. In essence, the entire body of a palo verde is capable of performing photosynthesis. In fact, estimates show that even when the tiny pinnate leaves are produced, a majority of the photosynthetic needs of the tree are met by the green woody tissues.

DSCN4116.JPG

Flowering occurs whenever there is enough water to support their development, which usually means spring. They are small and bright yellow and a tree can quickly be converted into a lovely yellow puff ball seemingly overnight. Bees relish the flowers and the eventual seeds they produce are a boon for wildlife in need of an energy-rich meal.

However, it isn’t just wildlife that benefits from the presence of these trees. Other plants benefit from their presence as well. As you can probably imagine, germination and seedling survival can be a real challenge in any desert. Heat, sun, and drought exact a punishing toll. As such, any advantage, however slight, can be a boon for recruitment. Research has found that palo verde trees act as important nurse trees for plants like the saguaro cactus (Carnegiea gigantea). Seeds that germinate under the canopy of a palo verde receive just enough shade and moisture from the overstory to get them through their first few years of growth.

In total, palo verde are ecologically important trees wherever they are native. What’s more, their ability to tolerate drought coupled with their wonderful green coloration has made them into a popular tree for native landscaping. It is certainly a tree I won’t forget any time soon.

Further Reading: [1] [2]